Artificial Intelligence in Education
C.-K. Looi et al. (Eds.)
IOS Press, 2005
© 2005 The authors. All rights reserved.
Toward supporting hypothesis formation and
testing in an interpretive domain
VincentAleven1andKevinAshley2
1
Human-ComputerInteractionInstitute
CarnegieMellonUniversity
2
IntelligentSystemsProgram,LearningResearchandDevelopmentCenter
UniversityofPittsburgh
Abstract.TheresearchfieldofAI&Educationhaslongbeeninterestedincognitiveprocessesinwhichstudentsformulateandtesthypothesesbyconsideringtheminlightofspecificcases.However,fewifanyofthesystemsthathavebeenbuilttargetdomainswhichareill-structuredandinwhichdeterminingwhetherahypothesizedruleandproposedoutcomeareconsistentwithpastdecisionsisamatterofinterpretation,ratherthandeductiveinference.Thegoalsofourprojectareto(1)developanAImodelofhypothesisformationandtestinginaninterpretivedomain,USSupremeCourtoralargumentsand(2)touseitinanintelligenttutoringsystemtoguidelawstudentsinlearningthatprocess.Asafirststeptowardthesegoalswewillconductanexperimenttoevaluatewhetherself-explanationpromptsfacilitatelearningbystudyingargumenttranscripts.
Introduction
TheresearchfieldofAI&Educationhaslongbeeninterestedinprocessesofinquirylearninginwhichstudentsformulatehypothesesandtestthemagainstspecificcases([1-5]).Theseprocessesastheyoccurinill-structureddomains,however,havereceivedlittleattention, one exception being the workonCATO[6-8].OralargumentsbeforetheUnitedStates Supreme Court offer prime examples ofhypothesisformulationandtestinginanill-structured domain. In these arguments, advocatesframehypothesesfordecidingacaseandtheJusticeschallengethem,oftenbyposinghypotheticalscenariosthattestthehypotheses’limits.Whiletheseprocessesinthelegaldomainbearsomeresemblancetothecorresponding processes in science or mathematics, in the legaldomaindeterminingwhetherahypothesizedruleandproposedoutcomeareconsistentwithpastdecisionsandplausiblehypotheticalsismuchmoreamatterofinterpretation.
The goals ofourprojectare(1)todevelopacomputationalmodelofthereasoning
processes exemplified inUSSupremeCourtoralargumentand(2)tousethemodelasthebasisforanintelligenttutoringsystemthatwillengagestudentsinanappropriatelysimplifiedversionoftheseprocesses.
Aplannedexperiment
Asafirststep,wewillrunanexperimenttofindoutwhetherspecificpromptsforself-explanationhelpstudentsgainadeeperunderstanding,astheystudytranscriptsofSupremeCourtoralarguments.Thecognitivescienceliteraturesupportsthatstudyingexamples is an effective learning strategy at the early stages ofacquiringacognitiveskill[9]andthatself-explanationpromptscanhelpstudentsgainadeeperunderstandingofthesubjectmatter([10-12]).However,theeffectivenessofpromptshasnotyetbeenshowninill-structured domains as complex as the legal reasoning exemplified in Supreme Court oral
V.AlevenandK.Ashley/TowardSupportingHypothesisFormationandTesting
Table1:ExcerptoftranscriptoforalargumentmadebeforetheUSSupremeCourtinCaliforniav.
Carney,105S.Ct.2066(1985),withself-explanationpromptsadded
ArgumentTranscript
Self-ExplanationPrompts
733
QUESTION:Well,whatifthevehicleisinoneofthesemobilehomeparksandhookeduptowaterandelectricitybutstillhasitswheelson?
MR.HANOIAN:[*9]Ifitstillhasitswheelsanditstillhasitsengine,itiscapableofmovementanditiscapableofmovementveryquickly.
QUESTION:Eventhoughthepeoplearelivinginitasahomeandarepayingrentforthetrailerspace,andsoforth?
QUESTION: Well, there are places wherepeoplecanplugintowater,andelectricity,anddo.Therearemanyplaces,forexample,inthestateIcamefromwherepeoplegoandspendthewinterinamobilehome.Andyouthinktherewouldbenoexpectationofprivacyinsuchcircumstances?
1.DoyouthinkH'sresponseiseffective?
2.WhyaretheJusticesaddingthesefeaturestothehypothetical?
MR.HANOIAN:Well,Iamnotsuggestingthatthereisnoexpectationofprivacyinthosecircumstances,YourHonor.
3.Whydoesitmatterwhethertherewouldbeexpectationsofprivacy?
4.Ifitwasclearthatthereis,orshouldbe,ahighexpectationofprivacyinthecurrentfactsituation,wouldthatfavorH'sposition?
5.Nothingissaidfromwhichwecaninferhowthisparticularhypotheticalshouldbedecided.Doesthatmatter?Thatis,whatgoodisittousehypotheticalswhoseoutcomeisunknown?Wouldn'titbebettertocitepastcases,whoseoutcomewedoknow?
6.Byconcedingthatthereareexpectationsofprivacyinthehypotheticalscenariossketchedbythejudges,doesHnotreducehischancesofwinningthecaseathand?
7.DoesHconcedethatthemobilehomeparkhypotheticalshouldhavetheoppositeresultasthecaseathand?
8.HowwouldHdistinguishthecurrentcasefromthemobilehomeparkhypothetical?
arguments.Inlightoftheevidencethatpromptsdonotbenefitallstudentsequally([10,11]), it is important to ask how effective prompts are in such challenging domains.
Table1showsexcerptsfromoralargumentsmadeinthecaseofCaliforniav.Carney,105S.Ct.2066(1985),withself-explanationpromptsinserted.Thiscaseinvolvedthelegalityunderthe4thAmendmentoftheUSConstitutionofawarrantlesssearchofamotorhomelocatedinadowntownSanDiegoparkinglot.PolicesuspecteddefendantCarneyoftradingmarijuanaforsexacts.AftertheyquestionedaboyleavingCarney’smotorhome,agentsenteredthemotorhomewithoutawarrantorCarney’sconsent,observedmarijuana,andarrestedCarney.Thecasepittedtwoconflictingprinciples:theState’srighttodealeffectivelywiththeexigentpossibilitythatevidenceofacrimewilldisappearversusthecitizen’sconstitutionallyprotectedexpectationofautonomyandprivacyinhishome.Intheoralargument,theState’sattorney,Mr.Hanoian,proposedabright line test: if the vehicle/home is capable of self-locomotion, then no warrant isrequiredtosearchit.AsshowninTable1,hethenhastorespondtotheJustice’schallengehypothetical:whatresultwouldhistestproducewhenappliedtoasummermotorhomewithwheelsthatishookeduptoutilities?Mr.Hanoianrespondsthatsuchavehiclestillmightbemovedinahurry,butconcedestheownerswouldhavesomeexpectationofprivacy. Some of the self-explanation promptsfocusontheeffectivenessofthatresponse.OthersfocusontheJustices’strategiesandpossiblereasonsforposinghypotheticals.Discussion
Inordertoevaluatetheeffectoftheself-explanationprompts,thestudywillcomparethelearningresultsofstudentsstudyingargumenttranscriptswithandwithoutself-explanation
734V.AlevenandK.Ashley/TowardSupportingHypothesisFormationandTesting
prompts.Apilotstudyinvolvingtwolawstudents,afirst-yearstudentandasecond-yearstudent,providedsomeevidencethatthepromptsareuseful.ThestudentswentthroughtheCarneytranscripttwice,thefirsttimewithoutself-explanationprompts,thesecondtimewith.Eachtime,theywereaskedtoansweranumberofquestionsabouttheargumentexchange they had just studied.Wesawadifferenceinthequalityoftheanswersbetweenthefirst-yearandthesecond-yearstudent,indicatingthatthematerialischallenging.Further,wesawthattheanswersofthefirst-yearstudentimproved,afterstudyingthetranscriptwiththeself-explanationprompts.Ofcourse,suchevidenceispreliminary,duetothe“smallN”.Also,theimprovementintheanswerscouldbeattributedsimplytothefactthatthestudentwentthroughthetranscripttwice.Thisconfoundwillbeavoidedintheactualexperimentbyhavingacontrolgroup.Wearecurrentlyworkingondevelopingasuitabletaskbywhichwecanmeasureanyimprovementinstudents’argument-makingcapabilities, a preliminary challenge for any research in an ill-structured domain.
Weexpectthestudytoyieldinformationabouthowstudentsunderstandandmake
arguments. This information will helpusstarttobuildanargumentmodelanddevelopanintelligenttutoringsystem.Thestudywillalsocontributetocognitivesciencebytestingwhetherspecificself-explanationpromptscanhelpstudentstolearntoengageinaprocessofhypothesisformationandtestinginanill-structureddomain.Acknowledgements
ThisresearchissponsoredbyNSFAwardIIS-0412830.ThecontentsofthepaperaresolelytheresponsibilityoftheauthorsanddonotnecessarilyrepresenttheofficialviewsoftheNSF.
References
Bunt,A.,C.Conati,andK.Muldner,ScaffoldingSelf-ExplanationtoImproveLearninginExploratoryLearningEnvironments,inProceedingsofthe7thInternationalConferenceonIntelligentTutoringSystems,ITS2004,J.Lester,R.M.Vicario,andF.Paraguaçu,Editors.2004,Springer:Berlin.
[2].Collins,A.andA.L.Stevens,GoalsandStrategiesofInquiryTeachers,inAdvancesinInstructional
Psychology,R.Glaser,Editor.1982,LawrenceErlbaum:Hillsdale,NJ.p.65-119.
[3].Murray,T.,L.Winship,andN.Stillings,EvaluationoftheSimForestInquiryLearningEnvironment:
InquiryCyclesandCollaborativeTeachingPractices,inAERA.2004:SanDiego,CA.
[4].Shute,V.J.andR.Glaser,ALarge-ScaleEvaluationofanIntelligentDiscoveryWorld:Smithtown.
InteractiveLearningEnvironments,1990.1:p.51-77.
[5].Woolf,B.P.,etal.,TrackingStudentPropositionsinanInquirySystem,inProceedingsofthe11th
InternationalConferenceonArtificialIntelligenceinEducation,AIED2003,U.Hoppe,F.Verdejo,andJ.Kay,Editors.2003,IOSPress:Amsterdam.p.21-28.
[6].Aleven,V.,UsingBackgroundKnowledgeinCase-BasedLegalReasoning:AComputationlModeland
anIntelligentLearningEnvironment.ArtificialIntelligence,2003.150:p.183-238.
[7].Aleven,V.andK.D.Ashley,TeachingCase-BasedArgumentationThroughaModelandExamples:
EmpiricalEvaluationofanIntelligentLearningEnvironment,inProceedingsofthe8thInternational
ConferenceonArtificialIntelligenceandEducation,AI-ED'97,B.duBoulayandR.Mizoguchi,Editors.1997,IOSPress:Amsterdam.p.87-94.
[8].Ashley,K.D.,R.Desai,andJ.Levine,TeachingCase-BasedArgumentationConceptsUsingDialectic
Argumentsvs.DidacticExplanations,inProceedingsoftheSixthInternationalConferenceonIntelligentTutoringSystems,ITS2002,S.A.Cerri,G.Gouardères,andF.Paraguaçu,Editors.2002,Spinger:Berlin.p.585-595.
[9].Atkinson,R.K.,etal.,Learningfromexamples:Instructionalprinciplesfromtheworkedexamples
research.ReviewofEducationalResearch,2000.70(2):p.181-214.
[10].Chi,M.T.H.,etal.,ElicitingSelf-ExplanationsImprovesUnderstanding.CognitiveScience,1994.18:p.
439-477.
[11].Renkl,A.,etal.,LearningfromWorked-OutExamples:theEffectsofExampleVariabilityandElicited
Self-Explanations.ContemporaryEducationalPsychology,1998.23:p.90-108.
[12].Schworm,S.andA.Renkl,Learningbysolvedexampleproblems:Instructionalexplanationsreduceself-explanationactivity,inProceedingofthe24thAnnualConferenceoftheCognitiveScienceSociety,W.D.GrayandC.D.Schunn,Editors.2002,LawrenceErlbaum:Mahwah,NJ.p.816-821.[1].
因篇幅问题不能全部显示,请点此查看更多更全内容