2017年高考适应性练习(一)
理科数学参考答案
一、选择题
C B D C D A D C B A
二、填空题
11.2e2 12. 90 13. 12 14. (1e,1] 15. (1,21)
三、解答题
16. 解:(1)由已知得,(ab)(ab)c(ac)0, „„„„„„„„1分 整理得acbac,
2222a2c2b2ac1. „„„„„„„„3分 于是 cosB2ac2ac2 又因为0B, 所以 B3. „„„„„„„„4分
(2)由(1)得f(x)4cosxcos(x3)
4cosx(cosx2123sinx) „„„„„„„„6分 2 2cosx23sinxcosx 1cos2x3sin2x 12sin(2x 由0x6) „„„„„„„„8分
2得2x, „„„„„„„„9分 4663 所以 当2x 当2x66,即x0时,f(x)取得最小值f(0)2,
62,即x时,f(x)取得最大值f()3. 66„„„„„„„11分
所以函数f(x)在[0,
17. 解:(1)因为AA1,BM垂直于底面ABC,所以AA1//BM,
故AA1,BM确定平面A1ABM, „„„„„„„„1分 因为AA1平面ABC,CN平面ABC,
所以AA1CN, „„„„„„„„2分 在正三角形ABC中,N为AB的中点,所以CNAB, 因为CNAA1,CNAB,AA1ABA,
故CN平面A1ABM. „„„„„„„„„3分 又A1N平面A1ABM,所以A1NCN. „„„„„„„„„4分
(2)在平面A1ABM内,作NzAB.
]上的值域为[2,3]. „„„„„„„„„„„12分 4zA1MBAyN以N为坐标原点,分别以NC,NA,Nz的方向为x,y,z轴的正方向, 建立如图空间直角坐标系Nxyz.
xC则N(0,0,0),A1(0,1,3),M(0,1,3),C(3,0,0), 23(3,1,3), „„„„„„6分 NC(3,0,0),A1M(0,2,),AC12设平面ACN法向量为m(x1,y1,z1), 1m3x1y13z10AC1则,解得x10,不妨令z11,有y13. NCm3x10取m(0,3,1). „„„„„„„„8分 设平面A1MN法向量为n(x2,y2,z2).
ACn3x2y23z20331x,不妨令,有,. yz1222344z20A1Mn2y22不妨取n(,343,1); „„„„„„„„10分 4设二面角MAC1N的平面角的大小为,则
coscosm,n3174, 4933111616所以二面角MAC1N所成角的余弦值为
7. „„„„„„„„12分 418. 解:(1)记事件A:“学生甲选修‘职业规划’”,记事件B:“学生甲选修‘心理健康’”,
记事件C:“学生甲选修‘艺术欣赏’”,记事件E:“学生甲至少选修两门校本课程”. 由题意EABCABCABCABC. 由事件的互斥性与独立性,
PEPABCPABCPABCPABC
PAPBPCPABCPAPBPC
PAPBPC
1131211111117. „„„„„„„„4分 234234234234247所以学生甲在高三学年至少选修两门校本选修课程的概率为.
24(2)由题意,随机变量X的所有可能取值为0,1,2,3,4,5,6. „„„„„„„„5分
由事件的独立性与互斥性,得
123112311131PX0,PX1,PX2,
23442344234812111351211PX3,PX4,
234234242341211111111PX5,PX6. „„„„„„„8分
2342423424所以随机变量X的分布列为
X P 0 1 2 3 4 5 6 1115111 44824122424„„„„„„„„„10分
数学期望为0
111511123123456. „„„12分 448241224241219. 解:(1)当n1时,2S13a13,可得a13, „„„„„„„„1分
当n2时,2Sn13an13,而2Sn3an3,两式相减可得,
2an3an3an1,即an3an1, „„„„„„„„3分
所以数列an是首项为3,公比为3的等比数列,
所以数列an的通项公式为an3; „„„„„„„„4分
n(2)由(1)可知,a13显然不是数列{bn}中的项,
因为a29421是数列{bn}中的第2项,所以c1a29, „„„5分 设ak3是数列{bn}中的第m项,则34m1(k,mN), 因为ak13k1kk33k3(4m1)43m3,
所以ak1不是数列{bn}中的项, „„„„„„„„7分 而ak23k293k9(4m1)4(9m2)1,
所以ak2是数列{bn}中的项, „„„„„„„„8分 所以c1a2,c2a4,c3a6,,cna2n,
所以数列{cn}的通项公式为cn3=9, „„„„„„„„9分 所以
2nn11111(),
log9cnlog9cn+2n(n2)2nn211111111(1) 2324n1n1nn2故Tn
32n3. „„„„„„„„12分 42(n1)(n2)20. 解:(1)由题意可知,c3,设M的坐标为(x0,y0),
则有kA1My0y,kA2M0, x0ax0ay0y1220,整理可得:x04y0a2,① x0ax0a4所以kA1MkA2M22x0y022 而221,②,联立①②可得:a4b, „„„„„„„„2分
ab22 又abc,所以有b1,a4,
222x2y21. „„„„„„„„„„„4分 故椭圆C的方程为4(2)(i)当直线l的斜率存在时,设直线方程为ykxm,设P(x1,y1),Q(x2,y2),
联立方程组ykxm222y,消可得,(14k)x8kmx4m40. 22x4y422222则有8km4(14k)4m4164k1m0,
8km4m24,x1x2且 x1x2, „„„„„„„„5分 2214k14k因为A1PAQAQ0,故(x12)(x22)y1y20, 1,所以A1P1所以(x12)(x22)(kx1m)(kx2m)0,整理可得:
(1k2)x1x2(km2)(x1x2)m240,① „„„„„„„„6分
代入①式可得:5m16km12k0,即(m2k)(5m6k)0, 当m2k时,直线为ykx2k,直线过点(2,0),舍去;
22666k时,直线为ykxk,直线过点(,0), 5556此时,直线恒过定点(,0). „„„„„„„„8分
5当m当直线l的斜率不存在时,可设方程为xm,
4m24m2与椭圆的交点为(m,),(m,),因为A1PAQ1,
224m22所以A0,解得m2(舍去) AQ0,故(m2)1P14666,此时直线为x,也过点(,0). 5556所以直线恒过定点(,0). „„„„„„„„9分
56181664(ii)法一:由(i)可知,当直线l的斜率不存在,即x时,S.
525525或者m当直线l的斜率存在时,
44k21m2, PQ1k|x1x2|1k214k22又点A22,0到直线l:kxym0的距离d2km1k2
124k21m2S|PQ|d2km 2214k63264k425k2将mk代入上式,可得S „„„„„„„11分
52514k2由题意可知k0,令于是S1t,则t(0,1) 214k169t27t16,0t1 25f(t)169t27t的对称轴为t7, 1816644 2525所以f(t)在t(0,1)为减函数,故f(t)f(0)16,所以S综上所述,PA2Q面积S的最大值为
64. „„„„„„„13分 256181664法二:当直线l的方程为x时,S,
5255256y6当直线方程为ykxk时,由题意可知,k0,x,
5k5y6x22联立k5,消x可得,(25100k)y60ky64k0,
22x4y401168S|y2y1|(y1y2)24y1y2 2553264k425k2 „„„„„„„11分 22514k令
1162tS9t7t16,0t1 t(0,1),则,214k257f(t)169t27t的对称轴为t,
18所以f(t)在t(0,1)为减函数,故f(t)f(0)16, 所以S16644 252564. „„„„„„„13分 25a, x综上所述,PA2Q面积S的最大值为
21. 解:(1)因为F(x)f(x)g(x)xlnx所以F(x)1axa22(x0), „„„„„„„1分 xxx当a1时,在[1,e]上F(x)0,所以F(x)在[1,e]上单调递增,
所以Fmin(x)F(1)a1,不满足题意; „„„„„„„2分
,a)上有F(x)0,函数单调递减,在(a,e]上有F(x)0,函数单调当1ae,在[1递增,所以Fmin(x)F(a)lna1解得a3, 2e,满足题意; „„„„„„„3分
当ae时,在[1,e]上F(x)0,所以函数F(x)在[1,e]上单调递减,
Fmin(x)F(e)2,不满足题意;
综上,ae. „„„„„„„5分
a恒成立,等x(2)由题意可知,对任意x[1,),f(x)g(x)恒成立,即lnxx价于a(xlnxx)max, „„„„„„„6分 令h(x)xlnxx2,x[1,),则h(x)lnx12x, 令t(x)lnx12x,则t(x)2120当x[1,)时,单调递减, x所以t(x)t(1)10, „„„„„„„8分 故h(x)0当x[1,)时,即h(x)在[1,)单调递减,所以hmax(x)h(1)1,故
a1. „„10分
(3)由(2)知,当a1时,当x[1,)时,lnxx1恒成立, x1n21(n1)(n1)所以,当n2时,有lnnn, „„„„„12分
nnnlnnn1ln21ln32lnnn1,,,,所以, n1n3243n1nln2ln3lnn1. „„„„„14分 以上各式相乘可得,34n1n即
本题(3)也可采用数学归纳法证明.
因篇幅问题不能全部显示,请点此查看更多更全内容