SmoothingMedical/Non-MedicalImageData
JasjitS.Suri,SeniorIEEEMember&DeeWu
MRClinicalResearchDivisionPhilipsMedicalSystems,Inc.,
Cleveland,OH,USA
email:jasjit.suri@cle.philips.comABSTRACT
J.Gao**,SameerSingh***,&SwamyLaxminarayan****
**KLA-Tencor,Milpitas,CA,USA
***PANNResearch,UniversityofExeter,Exeter,UK****Dept.ofBiomedicalEngineering,NJIT,Newark,NJ,USA
Abstract
Partialdifferentialequations(PDE’s)havedominatedimageprocessingresearchrecently(seeSurietal.[1],[2],[3],[4],[5],[6]andHaker[7]).Thethreemainreasonsfortheirsuccessare:(1)theirabilitytotransformasegmentationmodelingproblemintoapartialdifferen-tialequationframeworkandtheirabilitytoembedandintegratedifferentregularizersintothesemodels;(2)theirabilitytosolvePDE’sinthelevelsetframeworkusingfinitedifferencemethods;and(3)theireasyextensiontoahigherdimensionalspace.
ThispaperisanattempttosummarizePDE’sandtheirsolutionsappliedtoimagediffusion.Thepaperfirstpresentsthefundamentaldiffusionequation.Next,themulti-channelanisotropicdiffusionimagingispresented,followedbytensornon-linearanisotropicdiffusion.WealsopresenttheanisotropicdiffusionbasedonPDEandtheTukey/Huberweightfunctionforimagenoiseremoval.ThepaperalsocoverstherecentgrowthofimagedenoisingusingthecurveevolutionapproachandimagedenoisingusinghistogrammodificationbasedonPDE.Finally,thepaperpresentsthenon-linearimagedenoising.Examplescoveringbothsyntheticandrealworldimagesarepresented.
Keywords:ImageDenoising,Smoothing,Filtering,Diffusion,PartialDifferentialEquations(PDE’s).
toprovidesolutionsinafast,stableandclosedform;andlastly,(8)theirabilitytointeractivelyhandleimageseg-mentationinthePDEframework.
ApplicationofPDEhasrecentlybecomemorepromi-nentinthebiomedicalandnon-biomedicalimagingfields(seeChambolle[20]andMoreletal.[21])forshapere-covery(seetherecently1publishedbookbySapiro[22]).Thisisbecausetheroleofshaperecoveryhasalwaysbeenacriticalcomponentin2-Dand3-Dmedicalandnon-medicalimagery.Thisassistslargelyinmedicaltherapy,andobjectdetection/trackinginindustrialapplications,re-spectively(seetherecentbookbySurietal.[4]andthereferencesthereinandalsoseeWeickertetal.[23],[24]andthereferencestherein).Shaperecoveryofmedicalor-gansinmedicalimagesismoredifficultcomparedtootherimagingfields.Thisisprimarilyduetothelargeshapevari-ability,structurecomplexity,severalkindsofartifactsandrestrictivebodyscanningmethods.WithPDE-basedseg-mentationtechniques,ithasbeenpossibletointegratelowlevelvisiontechniquestomakethesegmentationsystemrobust,reliable,fast,closed-formandaccurate.ThispaperrevisitstheapplicationofPDEinthefieldofcomputervi-sionandimageprocessinganddemonstratestheabilitytomodelsegmentationinPDEandthelevelsetframework.BeforediscussingPDEtechniquesindetail,wewillfirstdiscussthedifferentkindsofPDEapplications.
2.DiffusionImaging:ImageSmoothingand
RestorationViaPDE
Thepresenseofnoiseinimagesisunavoidable.ThiscouldbeintroducedbytheimageformationprocessinMR,CT,X-rayorPETimages,orimagerecordingorevenanim-agetransmissionprocess.Severalmethods2havebeenpresentedinnoiseremovalandsmoothing,butthispa-perfocuseson“noiseremoval”or“noisediffusion”usingPDE.Thishasbeenusedforquitesometimebutrecently,robusttechniquesforimagesmoothinghavebeendevel-oped(seePeronaetal.[8],[9],Gerigetal.[10],Alvarezetal.[11],[12],Kimiaetal.[13],[14],Sapiroetal.[15],Casellesetal.[16],Weickert[17],Blacketal.[18],Ar-1Published2morphological
1.Introduction
Partialdifferentialequations(PDE’s)haverecentlydomi-natedthefieldsofcomputervision,imageprocessingandappliedmathematicsduetothefollowingreasons:(1)theirabilitytotransformasegmentationmodelingproblemintoaPDEframework;(2)theirabilitytoembedandintegrateregularizersintothesemodels;(3)theirabilitytosolvePDE’susingfinitedifferencemethods(FDM);(4)theirabilitytolinkbetweenPDE’sandthelevelsetframeworkforimplementingfinitedifferencemethods;(5)theirabil-itytoextendthePDEframeworkfrom2-Dto3-Dorevenhigherdimensions;(6)theirabilitytocontrolthedegreeofPDEintheimageprocessingdomain;(7)theirability
inJan.2001.
smoothing,linear,non-linear,geometric
ridgeetal.[19],Bajlaetal.[37],Olveretal.[38],Scherzeretal.[39],Romenyetal.[40],[41]andNielsenetal.[42]).Thissectioncoversthesearticlesinthefollowingway:Thefundamentaldiffusionequationisgiveninsub-section2.1.Sub-section2.2presentsmulti-channelanisotropicdiffu-sionimaging.Tensornon-linearanisotropicdiffusionisdiscussedinsub-section2.3.AnisotropicdiffusionbasedonPDEandtheTukey/Huberweightfunctionisdiscussedinsub-section2.4.Imagedenoisingusingthecurveevo-lutionapproachispresentedinsub-section2.5.Finally,imagedenoisingandhistogrammodificationusingPDEispresentedinsub-section2.6.2.1Perona-MalikAnisotropicImageDiffu-sionViaPDE(Perona)
OneofthefirstpapersondiffusionwasfromPeronaandMalik,calledPerona-MalikAnisotropicDiffusion(PMAD)3[8].PMAD’sideawasbasedononeoftheear-lierpapersbyWitkin[29].Peronaetal.[8]gavethefunda-mentalPDE-baseddiffusionequationforimagesmoothingas:
(1)
whereisthedivergence4operator,wastherateofchangeofimage,wasthediffusionconstantat
location
attimeandwasthegradientoftheim-age.Applyingthedivergenceoperator,theaboveequa-tioncanbere-writttenas:
(2)
wherewastheLaplacianoperator,wasthegradientofthediffusionconstantatlocationfortimeandwasthegradientoftheimage.Thediffusionconstantwasthekeyfactorinthesmoothingprocess.Per-onaetal.gavetwoexpressionsforthediffusionconstants:
and
,
wherewastheabsolutevalueofthegradientoftheimageattimeandwasaconstantwhichwaseithermanipulatedmanuallyforsomefixedvalueorcom-putedusinga“noiseestimator”asdescribedbyCanny[34].Usingthefinitedifferencemethod,Eq.2wasdis-cretizedto:
werewherethefinitedifference,diffusion,constantsand
for
timeinfourdifferentdirections(north,south,eastandwest)giventhecentrallocation.Thevaluesoftheseconstantswerechoseneitherexponentiallyorasaratioasdiscussedabove.ToseetheperformanceofthePMAD,wetookthreesetsofexamples:Incaseone,wetookasim-pletwopetalflowerimage,addedtheGaussiannoiseandappliedthePMADoverit.Theresultsoftheinput/ouput
3Alsocallededge-baseddiffusion.
4
operationcanbeseeninFigure1.Wetookamorecompleximageofaflowerimagewitheightpetals,addedthesameGaussiannoiseandappliedthePMADoverit.TheresultscanbeseeninFigure2.Inthesamefigure,wecomparedthePMADwithPollaketal.’sinversediffusionmethod(IDM)5(seePollaketal.[35])andfoundbetterresultsus-ingPollak’setal.’sIDM.Inthethirdexample,weappliedthePMADandPollaketal.’sIDMovernoisyfunctionalMRIdataofthebrain.TheresultscanbeseeninFigure3.
Recently,Perona[9]alsodefinedtheangular6diffu-sionbasedonthemagneticconceptofattractingobjects.Thisresearchisoutofthescopeofthispaper.
ProsandConsofPMADUsingPDE:ThefollowingarethemajoradvantagesofthePMAD:(1)Sincethiswasoneofthefirstpapersintheareaofimagediffusion,itgaveagoodpresentationonscale-spaceandanisotropicdiffusionforimagedenoising.(2)Thismethodtakesrelativelylittleexecutiontimeandwasgoodforgeneralpurposeapplica-tions.Thefollowingarethemajordisadvantagesofthismethod:(1)ThePMADmethodbroughtblurringatsmalldiscontinuitiesandhadapropertyofsharpeningedges(seeGerigetal.[10]).(2)ThePMADmethoddidnotincor-porateconvergencecriteria(seeGerigetal.[10]).(3)Themethodwasnotrobusttohandlelargeamountsofnoise.Themethoddidnotpreservethediscontinuitiesbetweenregions.(4)Themethodneededtoadjusttuningconstantssuchas.(5)Themethoddidnottakeintoaccountinho-mogeneousdatasampling.
Figure1.TwopetalflowerwithGaussiannoiseaddedandPMADappliedtoit.(lefttoright):Noisyim-ageswith20,10,5,3and1db.
(lefttoright):PMAD-PDEdiffusionresultsfromtheabovenoisyimages.Thediffusionconstantusedwas:
,wherewaschosenas10,thetimestepas
1andthetotaliterationswere200.
5Recently,
Pollaketal.[35]proposedadiffusionmethodwhichwas
differentfromPMADin:(1)discontinuingtheinverseflowfunctionand(2)mergingtheregionsduringdiffusion.Thefirstfeaturemadethedif-fusionstable.Everylocalmaximumwasdecreasedandeverylocalmin-imumwasincreased.Thesecondfeaturemadethealgorithmfastandunique.
6orientational
2.2Multi-ChannelAnisotropicImageDiffu-sionViaPDE(Gerig)
Recently,Gerigetal.[10]developedthenon-lineardif-fusionsystemforsmoothingornoisereductioninMRbrainimages.Thismethodwascalledmulti-channel7anisotropicdiffusionorcoupled8anisotropicdiffusion.KeepingPMAD’sdiffusioninmind,themulti-channelanisotropicimagediffusionwasgivenas:
(3)
wherethecoupleddiffusioncoefficient
wascomputedfrommulti-channeldatasetsand.andweretherateofchangeofmulti-channelimages.Thecoupleddiffusionwas
given
as:
and
,
where
wastheabsolutevalueofthe
gradientofthemulti-channelimagesandandwasaconstantasusedbyPMAD.Note,ifdiscontinuitiesweredetectedinbothchannels,thenthecombineddiffusioncoefficientwaslargerthananysinglecomponentandthesignificanceoflocalestimationswasincreased.Ontheotherhand,ifadiscontinuitywasdetectedonlyinoneofthechannels,thecombinedcoefficientrespondedtothediscontinuityandhaltedthediffusion.
ProsandConsofMulti-ChannelAnisotropicDiffusion:Themajoradvantagesofthistechniqueare:(1)Efficientnoisereductioninhomogeneousregions.(2)Edgeen-hancementandpreservationofobjectcontours,boundariesbetweendifferenttissuesandsmallstructuressuchasves-sels.(3)Filteredimagesappearclearerandboundariesarebetterdefined,leadingtoanimproveddifferentiationofad-jacentregionsofsimilarintensitycharacteristics.Thema-jorweaknessesofthistechniqueare:(1)ThepaperdidnotshowhowthePDEflowwouldbehaveandhowtheconver-gencewouldgetaffectedifthe“coupledPDEdiffusion”wascomputed.(2)Thenumberofiterationsinthesmooth-ingprocesswasselectedbyvisualcomparison.Thustheconvergencetosteady-stateandstoppingcriteriawasfuzzy.(3)Therewasnodiscussiononthetimecomputationfor3-Dfilteringfornon-isotropic9volumes.(4)Selectionoftheparameterwasnotautomatic.
7for
example,MRbraindataacquiredfromthreedifferentscantech-niques:-,-and-weighted
8ThisnamecameaboutsincethediffusioncoefficientwascoupledbetweentwodifferentMRdatasets.
9Anon-isotropicvolumeisavolumewhosethreedimensionsarenotsame.
Figure2.Thisflowerimagehasalargersetofpetals
comparedtoFigure1andconvolutions.(lefttoright):Noisyimageswith20,10,5,3,1and1db.
(lefttoright):PMAD-PDEdiffusionre-sultsfromtheabovenoisyimages.Thediffusionconstant
usedwas:
,wherewaschosenas10,thetimestepas1andthetotalnumberofiterationsusedwas200.Note,thelastimage(rightmost)inthebot-tomrowwastheresultduetoPollaketal.’sIDM[35].Thenumberofiterationsusedwas500.
Figure3.NoisyfMRIimageswithPMADandPollaket
al.’sIDMappliedtothem.
:fMRInoisybrainaxialslice.:PMAD-PDEdiffusionresults.Thediffu-sionconstantusedwas:,where
waschosenas10,thetimestepas0.1andthetotalnumber
ofiterationsusedwas200.
:Pollaketal.’sIDMwithtimestep0.1andnumberofiterationsusedwas500.Asseeninthisfigure,Pollaketal.’smethoddidthebestinremovingthenoiseandhighlightingthegraymatter/whitematterinterface(fordetailsontheimportanceofWM/GMinterface,seeSurietal.[5]).
2.3TensorNon-LinearAnisotropicDiffu-sionViaPDE(Weickert)
TocombattheproblemsofPMAD,Weickert[17]pro-posedatrulyanisotropicdiffusion,calledTensorNon-LinearAnisotropicDiffusion(TNAD)andwasmathemat-icallygivenas:
(4)
wherewasthediffusiontensorhavingeigenvectorsand
anddefinedinawaysuchthat:and
theeigenvalues
.Weickertsuggestedchoosingandsuchthat:and.Thesam-pleresultsofthistechniquecanbeseeninFigure4taken
fromthesource(seeWeickertetal.[48]).DetailsonthismethodcanbeseeninthebookbyWeickert[17].Otherauthorswhodidworkinnon-linearanisotropicdiffusionwere:Schn¨orr[25],[26]andCatteetal.[27],[28].
ProsandConsofTensorNon-LinearAnisotropicDiffu-sion:ThefollowingisthemainadvantageoftheTNADmethod:(1)Themethodperformedwellonawidevarietyofimages.ThefollowingistheweaknessoftheTNADmethod:(1)Themethoddidnottakeintoaccountinhomo-geneousdatasampling.
Figure4.Tensorimagediffusionona3-Dultrasoundim-age.:Renderingofa3-Dultrasounddatasetofa
10-weekoldhumanfetus.
:Renderingafterdenois-ingbyTensorNon-LinearAnisotropicDiffusion(TNAD)filtering(seeWeickertetal.[48]).CourtesyofProfessorWeickert,ComputerVision,GraphicsandPatternRecog-nitionGroup,DepartmentofMathematicsandComputerScience,UniversityofMannheim,Mannheim,Germany.
2.4AnisotropicDiffusionUsingthe
Tukey/HuberWeightFunction(Black)
Blacketal.[18]recentlyshowedacomparativestudybe-tweenPerona-MalikAnisotropicDiffusion(PMAD)basedonacombinationofPDEandTukey’sbiweightestima-tor,knownasBlacketal.’sRobustAnisotropicDiffu-sion(BRAD).Inthisimagesmoothingprocess(estimating
piecewiseconstant),thegoalwastominimizethatsatis-fied:
(5)
wherewasthepixellocation,tookoneofthefourneigh-boursandwasthesetoffourneighboursof.wasthe
errornormfunction(calledarobustestimator,seeMeeretal.[43])andwasthescaleparameter.Therelation-shipbetweenandPMADwasexpressedas:IfPMADwasgivenbythefunction,where,
then
,thederivativeoftheerrornormfunc-tion.Blacketal.usedTukey’sBiweightandtheHubermin-maxfunctionforerrornorm.TheTukeyfunctionwasgivenas:,ifand
,if.TheHuber’smin-maxforer-rornormwas.Notethatwas,ifor,if.computedBlacketas:al.used=1.4gradientmedian
de-scentforsolvingtheimagesmoothingminimizationprob-lem.ThusthediscretesolutionofBRADwas:
(6)
wherewasthederivativeoferrornorm,.Thewhole
ideaofbringingtherobuststatisticswastoremoveout-liersandpreserveshapeboundaries.ThusBRAD=PMAD+Huber/Tukey’sRobustestimator.Figure5comparesPerona-Malik’sAnisotropicDiffusion(PMAD)withBlacketal.’sTukeyfunction(BRAD).Thefigureshowsthere-sultsfor100and500iterations.Ascanbeseen,theresultsofTukeyarefarsuperiorcomparedtoPMAD.Also,atin-finity,thePMADwillmaketheimagegoflatandtheTukeywillnot10.ReadersinterestedintheapplicationofHuber’sweightfunctioninmedicalapplicationcanseetheexcel-lentworkbySuri,HaralickandSheehanetal.[44].Here,thegoalwastoremovetheoutlierlongitudinalaxesoftheLeftVentricle(LV)forruledsurfaceestimationtomodelthemovementoftheLVoftheheart.
ProsandConsofAnisotropicDiffusionBasedonRo-bustStatistics:ThefollowingarethemainadvantagesoftheBRADmethod:(1)ThemethodwasmorerobustcomparedtoPMAD.(2)Themethodwasstableforalargenumberofiterationsandtheimagedidnotgetflatwhenwasinfinity.ThefollowingarethemaindisadvantagesoftheBRADmethod:(1)TherewasnodiscussiononhowthewascomputedfordesignoftheHuber’sweightfunction.(2)Therewasnodiscussiononthecomputationaltime.
2.5ImageDenoisingUsingPDEandCurve
Evolution(Sarti)
Recently,Sartietal.[49]presentedanimagedenoisingmethodbasedonthecurveevolutionconcept.Beforewe
10Personal
communicationwithProfessorSapiro.
Figure5.ComparisonofthePerona-MalikfunctionandTukeyfunctionafter100and500iterations.ResultsofPerona-MalikPDEandBlacketal.’sTukeymethods.Leftmost:PMADwithnumberofiterationssetto100.LeftMiddle:Tukeyfunctionwithnumberofiterationssetto100.RightMiddle:PMADwithnumberofiter-ationssetto500iterations.Rightmost:Tukeyfunctionwithnumberofiterationssetto500(CourtesyofProfessorSapiro,DepartmentofElectricalandComputerEngineer-ing,UniversityofMinnesota,Minneapolis,MN,source:Blacketal.[18]).
discusswhatSartietal.did,wewilljustpresentthefunda-mentalequationpresentedbyKichenassamyetal.[50]and
Yezzietal.[51].Theypresentedthecurveevolutionmodelbyintroducinganextrastoppingterm.Thiswasexpressedmathematicallyas:
(7)
Notethatdenotedtheprojectionofanattrac-tiveforcevectoronthenormaltothecurve.Thisforcewasrealizedasthegradientofapotentialfield.Thispotentialfieldforthe2-Dand3-Dcasewasgivenas:
,respectively,whereand
wasthegradientGaussianopera-tor,andweretheconvolutionoperations,respectively.NotethatEquation7issimilartoEquation7givenbyMalladietal.in[52].Mal-ladietal.callstheequationasanadditionalconstraintonthesurfacemotion.RewritingEquation7ofMalladietal.[52]becomes:
(8)
wherewastheedgestrengthconstant,wasacon-stant(1asusedbyMalladietal.),wasthecurvaturedependentspeed,wastheconstanttermcontrollingthecurvaturedependentspeedandwasthesameasdefinedabove.Havingpresentedthelevelsetequationintermsofspeedfunctionsandconstants,Sartietal.’smethodchangedtheaboveequationbyremovingthecon-stantpropagationforce
andsimplysolvedtheremain-ingequationforimagedenoising.Thesmoothingworked
inthefollowingway:If
waslarge,theflowwasslowandtheexactlocationoftheedgewasre-tained.If
wassmall,thentheflowtendedtobefast,therebyincreasingthesmoothingprocess.Thefilteringmodelwasreducedtomeancurvatureflowwhen
wasanequationtounity.Thus,thedataconsistency
term
servedasanedgeindicator.Theconvolutionop-erationsimplyeliminatedtheinfluenceofspuriousnoise.Sartietal.thussolvedEq.7iterativelyandprogressivelysmootheditovertime.Theedgeindicatorfunctionbe-camesmootherandsmootherovertimeanddependedlessandlessonthespuriousnoise.NotethattheminimalsizeofthedetailisrelatedtothesizeoftheGaussiankernel,whichactedlikeascaleparameter.Thevarianceofwastakenaswhichcorrespondedtothedimen-sionofthesmalleststructurethathadtobepreserved.Thesharpeningoftheedgeinformationwasduetothehyper-bolicterm
.ProsandConsofImageDenoisingUsingPDEandCurveEvolution:Thefollowingarethemajoradvan-tagesofsuchamethod:(1)Themethodwasasimpleex-tensionfromthebasiccurveevolutionmethod.(2)Thesharpeningoftheedgeinformationwasduetothehyper-bolicterm
.Thefollowingaretheweaknesses:(1)Therewasnotmuchdiscussiononthescale-spacepa-rameter,thevarianceof
.Thiswasoneofthecriti-calpiecesintheimagedenoising.(2)TherewasnotmuchdiscussiononthestoppingmethodforthePDE.Sincecon-stantforceplaysacriticalroleandwillbeseenaheadasbeingusedasa“regularizerforce”insegmentationmodel-ingandastopperaswell,wefeelthatconstantforcecanbeusedmoreefficientlyratherthanplainremovalinimagedenoisingprocess.
2.6ImageDenoisingandHistogramModifi-cationUsingPDE(Sapiro)
Adescriptionondiffusionwouldbeincompleteifref-erencesfromSapiroweremissed.Recently,Sapiroetal.[30],[31]and[15]developedtheensembleoftwodif-ferentalgorithmsinonePDE.Thismethodusedhistogrammodification(orhistogramequalization)andimagede-noisinginonePDE.Thiswascallededgepreservationanisotropicdiffusion.Theideawastosmooththeimageonlyinthedirectionparalleltotheedges,achievingthisviacurvatureflows.Thiswasdoneusingthefollowingflowequation:
(9)
wherewasthelevelsetfunctionwhichevolvedaccordingtotheaffineheatflowforplanarshapesmoothingwiththevelocitygivenby,wherewastheconvo-lutionoperator.Now,thehistogramequalizationflowwasgivenas:
(10)
whereimage
;representedarea(ornumberofpixels).CombiningEq.9andEq.10
yieldedajointPDEas:
(11)
segmentationsincetheycanhandleanyofthecavities,con-cavities,convolutedness,splittingormerging.(5)FindingtheLocalandGlobalMinima:Thereisnoproblemfind-ingthelocalminimaorglobalminimaissues,unliketheoptimizationtechniquesofparametricsnakes.(6)NormalComputation:Thesetechniquesarelesspronetothenor-Here,isdefinedas:Ifthedensityfunctionofim-age
is,where,then
wastheweighting,likea“cumulated”factor.Theredensityhasbeenfunction.someresearchHere,
whichrelatesanisotropicdiffusion,curveevolutionandsegmentation.InterestedresearcherscanlookatSapiro[33]andShah[36].
ProsandConsofImageDenoisingandHistogramMod-ificationViaPDE:Thefollowingarethemajoradvan-tagesofsuchamethod:(1)Thispapergaveusanex-ampleonhowtousedifferentkindsofdiffusiontogether.(2)Thismethodsmoothedtheimagesonlyinthedirec-tionparalleltotheedges.Thefollowingistheweaknessofsuchamethod:(1)Therewasnodiscussionabouthow
toselecttheparameter.
Havingdiscussedthedif-ferentimagediffusiontechniquesbasedonPDE,andtheirprosandcons,interestedreaderscangointomoredetailonbehavioralanalysisonanisotropicdiffusioninimagepro-cessing(seeYouetal.[32]).Also,seeknowledge-basedtensoranisotropicdiffusionforcardiacMRIbySanchez-Ortizetal.[46].AdetailedreviewonPDE-baseddiffusionandacomparisonbetweendifferentsmoothingtechniquesusingPDE,scale-spacemathematicalmorphologyandin-versediffusiontechniquescanbeseenbySurietal.[45].
3.Advantages,DisadvantagesandConclu-sions3.1AdvantagesofPDEFramework
ThePDEbasedmethodinthelevelsetframeworkoffersalargenumberofadvantagesthatareasfollows:(1)CaptureRange:Thegreatestadvantageofthistechniqueisthatthisalgorithmincreasesthecapturerangeofthe“fieldflow”,whichincreasestherobustnessoftheinitialcontourplace-ment.(2)EffectofLocalNoise:Whentheregionalinfor-mationisintegratedintothesystem,thenthelocalnoiseoredgedoesnotdistractthegrowthprocess.Thistechniqueisnon-localandthusthelocalnoisecannotdistractthefinalplacementofthecontourorthediffusiongrowthprocess.(3)NoNeedofElasticityCoefficients:Thesetechniquesarenotcontrolledbytheelasticitycoefficients,unliketheclas-sicalparametriccontourmethods.Thereisnoneedtofitthetangentstothecurvesandcomputethenormalsateachvertex.Inthissystem,thenormalsareembeddedinthesystemusingthedivergenceofthefieldflow.Thesemeth-odshavetheabilitytomodeltheincrementaldeformationsintheshape.(4)SuitabilityforMedicalImageSegmenta-tion:Thesetechniquesareverysuitableformedicalorgan
malcomputationalerrorwhichisveryeasilyincorporatedinthe“classicalballoonforce”snakesforsegmentation.(7)Automaticity:Itisveryeasytoextendthismodelfromsemi-automatictocompletelyautomaticbecausetheregionisdeterminedonthebasisofpriorinformation.(8)Integra-tionofRegionalStatistics:Thesetechniquesarebasedonthepropagationofcurves(justlikethepropagationofrip-plesinthetankorpropagationofthefireflames)utilizingtheregionstatistics.(9)FlexibleTopology:Thesetech-niquesadjusttothetopologicalchangesofthegivenshapesuchasjoiningandbreakingofthecurves.(10)WideAp-plications:Thistechniquecanbeappliedtounimodal,bi-modalandmulti-modalimagery,whichmeansitcanhavemultiplegrayscalevaluesinit.ThesePDE/levelsetbasedmethodshaveawiderangeofapplicationsin3-Dsurfacemodeling.(11)SpeedoftheSystem:Thesetechniquecanbeimplementedusingthefastmarchingmethodsinthenar-rowbandandthuscanbeeasilyoptimized.(12)Extension:Thistechniqueisaneasyextensionfrom2-Dto3-D.(13)IncorporationofRegularizingTerms:Thiscaneasilyincor-porateotherfeaturesforcontrollingthespeedofthecurve.Thisisdonebyaddinganextratermtotheregion,gradientandcurvaturespeedterms.(14)HandlingCorners:Thesystemtakescareofthecornerseasilyunliketheclassicalparametriccurves,whereitneedsspecialhandlingatthecornersoftheboundary.(15)ResolutionChanges:Thistechniqueisextendabletomulti-scaleresolutions,whichmeansthatatlowerresolutions,onecancomputeregionalsegmentations.Thesesegmentedresultscanthenbeusedforhigherresolutions.(16)Multi-phaseProcessing:Thesetechniquesareextendabletomulti-phase,whichallowsthatiftherearemultiplelevelsetfunctions,thentheyautomat-icallymergeandsplitduringthecourseofthesegmenta-tionprocess.(17)SurfaceTracking:Trackingsurfacesareimplementedusinglevelsetsverysmoothly.(18)Quan-tificationof3-DStructures:Geometricalcomputationscanbedoneinanaturalway,forexample,onecancomputethecurvatureof3-Dsurfacesdirectlywhileperformingnormalcomputations.(19)IntegrationofRegularizationTerms:Allowseasyintegrationofvisionmodelsforshaperecov-erysuchasfuzzyclustering,Gibbs’model,MarkovRan-domFieldsandBayesianmodels(seeParagiosetal.[53]).Thismakesthesystemverypowerful,robustandaccurateformedicalshaperecovery.Onecansegmentanypartofthebraindependinguponthemembershipfunctionofthebrainimage.So,dependinguponthenumberofclassesestimated,onecansegmentanyshapein2-Dor3-D.(20)ConciseDescriptions:Onecangiveconcisedescriptionsofdifferentialstructuresusinglevelsetmethods.Thisisbecauseofthebackgroundmeshresolutioncontrols.(21)HierarchicalRepresentations:Thelevelsetoffersanatu-
ralscalespaceforhierarchicalrepresentations.(22)Repa-rameterization:Thereisnoneedforreparameterizationforcurve/surfaceestimationduringthepropagation,unlikeintheclassicalsnakesmodel.(23)ModelinginaContin-uousDomain:OnecanmodelthesegmentationprocessinacontinuousdomainusingPDE’s.Thustheformalismprocessisgreatlysimplifiedwhichisgridindependentandisotropic.(24)StabilityIssues:Withthehelpofresearchinnumericalanalysis,onecanachievehighlystablesegmen-tationalgorithmsusingPDE’s.(25)ExistenceandUnique-ness:UsingPDE’s,onecanderivenotonlysuccessfulal-gorithmsbutalsousefultheoreticalresults,suchasexis-tenceanduniquenessofsolutions(seeAlvarezetal.[12]).
3.2DisadvantagesofPDEinLevelSets
Eventhoughlevelsetshavedominatedseveralfieldsofimagingscience,thesefrontpropagationalgorithmshavecertaindrawbacks.Theyareasfollows:(1)ConvergenceIssue:Althoughtheedgeswillnotbeblurrywhenoneper-formsthediffusionimaging,theissueofconvergenceal-waysremainsachallenge.Indiffusionimaging,ifthestepsizeissmall,thenittakeslongertoconverge.(2)DesignoftheConstantForce:ThedesignoftheconstantforceinthePDEisanotherchallenge.Thisinvolvescomputationofregionalstatisticsintheregionofthemovingcontour.Thereisatrade-offbetweentherobustnessoftheregionaldesign,computationaltimefortheoperationandtheaccu-racyofthesegmentation.Thedesignofthemodelplaysacriticalroleinsegmentationaccuracyandremainsasachallenge.Anotherchallengeoccursifthedesignforceisinternalorexternal(fordetails,seeSurietal.[6]).(3)Sta-bilityIssues:ThestabilityissuesinPDE’sarealsoimpor-tantduringthefrontpropagation.Theratioof
,calledtheCFLnumber11,isanotherfactorwhichneedstobecare-fullydesigned.(4)InitialPlacementoftheContour:Oneofthemajordrawbacksoftheparametricactivecontoursisitsinitialplacement.Thisdoesnothaveeitherenoughcapturerangeorenoughpowertograbthetopologyoftheshapes.Bothofthesedrawbacksareremovedbylevelsetsprovidedtheinitialcontourisplacedsymmetricallywithrespecttotheboundariesofinterest.Thisensuresthatthelevelsetsreachobjectboundariesalmostatthesametime.Onthecontrary,iftheinitialcontourismuchclosertothefirstportionoftheobjectboundarycomparedtothesecondportion,thentheevolvingcontourcrossesoverthefirstpor-tionoftheobjectboundary.Thisisbecausethestopfunc-tiondoesnotturnouttobezero.Oneofthecontrollingfactorsforthestopfunctionisthegradientoftheimage.Therelationshipofthestopfunctiontothegradientisitsinverseandalsodependsupontheindexpowerinthera-tio.Forstoppingthepropagation,thede-nominatorshouldbelarge,whichmeanstheimageforcesduetothegradientshouldbehigh.Thismeansindexshouldbehigh.Inotherwords,ifishigh,thenthegra-11Courant
number,namedaftertheauthorCourantetal.[54]
dientishigh,whichmeanstheweakboundariesarenotde-tectedwellandwillbeeasilycrossedoverbytheevolving
curve.If
islow(lowthreshold),thenthelevelsetwillstopatnoisyoratisolatededges.(5)EmbeddingoftheOb-ject:Ifsomeobjects(say,theinnerobjects)areembeddedinanotherobject(theouterobject),thenthelevelsetwillnotcapturealltheobjectsofinterest.Thisisespeciallytrueiftheembeddedobjectsareasymmetricallysituated.Undersuchconditions,oneneedsmultipleinitializationsoftheactivecontours.Thismeanstherecanbeonlyoneactivecontourperobject.(6)GapsintheObjectBound-aries:ThisisoneoftheseriousdrawbacksofthelevelsetmethodandhasbeenpointedoutbySiddiqietal.[55].Duetothegapsintheobject,theevolvingcontoursimplyleaksthroughthegaps.Asaresult,theobjectsrepresentedbyincompletecontoursarenotcapturedcorrectlyandfully.Thisisespeciallyprominentinrealisticimages,suchasinultrasoundandinmulti-classMRandCTimages.(7)Prob-lemsDuetoShocks:Shocksareamongthemostcommonproblemsinlevelsets.Kimiaandco-workersin[56],[57],[58]developedsuchaframeworkbyrepresentingshapeasthesetofsingularities(calledshocks)thatariseinarichspaceofshapedeformationsasclassifiedintothefollowingfourtypes:(i)first-ordershocksareorientationdiscontinu-ities(corners)andarisefromprotrusionsandindentations;(ii)second-ordershocksareformedwhenashapebreaksintotwopartsduringadeformation;(iii)third-ordershocksrepresentbends;and(iv)fourth-ordershocksaretheseedsforeachcomponentofashape.Theseshocksariseinlevelsetsandcansometimescauseseriousproblems.(8)Chal-lengeinSegmentation:Althoughthelevelsetsegmentationmethodsucceedsintheobjectandmotionsegmentation,ithasweaknessinsegmentingmanyotherkindsofimages.Theseimagesmostlydonothaveahomogeneousback-ground;instead,theyarecomposedofmanydifferentre-gions,suchasinnaturalsceneryimages(containingstreets,mountains,trees,carsandpeople).Themethodbasedoncurveevolutionwillnotproducethecorrectregionsasde-sired.Suchasegmentationproblemisachallengetobeovercome.
3.3ConclusionsandtheFutureinPDE-basedMethods
Theclassofdifferentialgeometry,alsocalledPDEincon-junctionwithlevelsets,hasbeenshowntodominateim-ageprocessing,inparticulartomedicalimaging,inama-jorway.Westillneedtounderstandhowtheregular-izationtermscanbeintegratedintothelevelsetstoim-provesegmentationschemes.Eventhoughtheapplicationoflevelsetshasgonewellinthefieldsofmedicalimag-ing,biomedicine,fluidmechanics,combustion,solidifica-tion,CAD/CAM,objecttracking/imagesequenceanalysisanddevicefabrication,wearestillfarawayfromachiev-ingstable3-Dvolumesandastandardsegmentationinreal-time.Bystandard,wemeanthatwhichcansegment
the3-Dvolumewithawidevariationinpulsesequenceparameters.Wewillseeinthenearfuturethemodelingoffrontpropagationthattakesintoaccountthephysicalconstraintsoftheproblem,forexample,minimizationofvariationgeodesicdistances,ratherthansimpledistancetransforms.Wewillalsoseemoreincorporationoflikeli-hoodfunctionsandadaptivefuzzymodelstopreventleak-ingofthecurves/surfaces.Agoodexampleofintegra-tionofthelowlevelprocessesintotheevolutionprocess
wouldbegivenas:
,where,whereisthe
lowlevelprocessfromedgedetection,opticalflow,stereodisparity,texture,etc.Thebetterthe,themorero-bustwouldbethelevelsetsegmentationprocess.Wealsohopetoseemorepapersonlevelsetswherethesegmen-tationstepdoesrequireare-initializationstage(seeZhaoetal.[59]andEvansetal.[60]).Itwouldalso,however,behelpfulifwecanincorporateafastertriangulationalgo-rithmforisosurfaceextractionin3-Dsegmentationmeth-ods.
Wealsoseeamassiveeffortbythecomputervisioncommunitytointegrateregularizationtermstoimprovetherobustnessandaccuracyofthe3-Dsegmentationtech-niques.Inthispaper,weshowedtheroleofPDEandlevelsetmethodforimagesmoothingorimagediffusionorim-agedenoising.Alsoshownwashowcurve/surfaceprop-agationhypersurfacesbasedondifferentialgeometryareusedforthesegmentationofobjectsinstillimagery.Wealsoshowedtherelationshipbetweentheparametricde-formablemodelsandcurveevolutionframework;incorpo-rationofclamping/stoppingforcestoimprovetherobust-nessofthesetopologicallyindependentcurves/surfaces.Wespentaconsiderableamountoftimeindiscussingseg-mentationofanobjectinmotionimagerybasedonPDEandthelevelsetframework.Thepaperalsopresentedre-searchintheareaofcoupledPDE’sforedgepreservationandsmoothing.SomecoveragewasalsogivenonPDEinmiscellaneousapplications.Finally,thispaperconcludedwiththeadvantagesandthedisadvantagesofsegmentationmodelingviageometricdeformablemodels(GDM),PDEandlevelsets.
Acknowledgements:ThanksareduetoDr.ElaineKeelerfromMarconiMedicalSystems,Inc.,Cleveland,OH,Dr.GeorgeThoma,NationalInstitutesofHealth,Bethesda,MD,ProfessorLindaShapiro,UniversityofWashington,Seattle,WA,fortheirmotivations.
References
[1]Suri,J.S.,TwoDimensionalFastMRBrainSeg-mentationUsingaRegion-BasedLevelSetAp-proach,AcceptedforPublicationinInt.JournalofEngineeringinMedicineandBiology,2001.[2]Suri,J.S.,LeakingPreventioninFastLevelSets
UsingFuzzyModels:AnApplicationinMRBrain,
Inter.ConferenceinInformationTechnologyinBiomedicine,pp.220-226,Nov.2000.
[3]Suri,J.S.,WhiteMatter/GrayMatterBoundary
SegmentationUsingGeometricSnakes:AFuzzyDeformableModel,Proc.InternationalConferenceonAdvancesinPatternRecognition,LectureNotesinComputerScience(LNCS)No.2013,Singh,S.,Murshed,N.andKropatsch,W.(Eds.),Springer-Verlag,RiodeJaneiro,Brazil(11-14March),pp.331-338,2001.[4]Suri,J.S.,Setarehdan,S.K.andSingh,S.,Ad-vancedAlgorithmicApproachestoMedicalIm-ageSegmentation:State-of-the-ArtApplicationsinCardiology,Neurology,MammographyandPathology,ISBN1-85233-389-8,FirstEds.,InPress,2001.[5]Suri,J.S.,Singh,S.andReden,L.,ComputerVi-sionandPatternRecognitionTechniquesfor2-Dand3-DMRCerebralCorticalSegmentation:AState-of-the-ArtReview,AcceptedforPublicationIn:Inter.JournalofPatternAnalysisandApplica-tions,2001.[6]Suri,J.S.,Liu,K.,Singh,S.,Laxminarayana,S.
andReden,L.,ShapeRecoveryAlgorithmsUs-ingLevelSetsin2-D/3-DMedicalImagery:AState-of-the-ArtReview,IEEETrans.inInforma-tionTechnologyinBiomedicine(ITB),2001(InPress).[7]Haker,S.,GeometricPDE’sinComputerVision,
Ph.D.Thesis,DepartmentofComputerScienceandEngineering,UniversityofMinnesota,Min-neapolis,MN,1999.[8]Perona,P.andMalik,J.,Scale-spaceandedgede-tectionusinganisotropicdiffusion,IEEETrans.inPatternAnalysisandMachineIntelligence,Vol.12,No.7,pp.629-639,Apr.1990.[9]Perona,P.,Orientationdiffusions,IEEETrans.on
ImageProcessing,Vol.7,No.3,pp.457-467,March1998.Gerig,G.,Kubler,O.,Kikinis,R.andJolesz,F.A.,
NonlinearanisotropicfilteringofMRIdata,IEEETrans.onMedicalImaging,Vol.11,No.2,pp.221-232,1992.Alvarez,L.,Lions,P.-L.andMorel,J.M.,Image
selectivesmoothingandedgedetectionbynonlin-eardiffusion,SIAMJ.Numer.Anal.,Vol.29,No.3,pp.845-866,1992.Alvarez,L.,Fuichard,F.,Lions,P.-L.andMorel,J.
M.,Axiomsandfundamentalequationsonimageprocessing,Arch.Ration.Mech.,Vol.123,No.3,pp.199-257,1993.
[10][11][12][13]Kimia,B.B.andSiddiqi,K.,Geometricheatequa-tionandnon-lineardiffusionofshapesandimages,inIEEEComputerSocietyConferenceonCom-puterVisionandPatternRecognition,pp.113-120,1994.[14]Kimia,B.B.andSiddiqi,K.,GeometricHeat
EquationandNonlinearDiffusionofShapesandImages,ComputerVisionandImageUnderstand-ing,Vol.64,No.3,pp.305-322,1996.[15]Sapiro,G.andCaselles,V.,Histogrammodifica-tionviadifferentialequations,J.DifferentialEqua-tions,Vol.135,No.2,pp.238-268,1997.[16]Caselles,V.,Kimmel,R.andShapiro,G.,Geodesic
activecontours,Int.J.ofComputerVision,Vol.22,No.1,pp.61-79,1997.[17]Weickert,J.,AnisotropicDiffusioninImagePro-cessing,Teubner-Verlag,Stuttgart,Germany,ISBN3-519-02606-6,1998;seealsothearticle:Are-viewofnonlineardiffusionfiltering,InScale-SpaceTheoryinComputerVision,Utrecht,TheNetherlands,pp.3-28,1997.[18]Black,M.,Sapiro,G.,Marimont,D.andHeeger,
D.,RobustAnisotropicDiffusion,IEEETrans.Im-ageProcessing,Vol.7,No.3,pp.421-432,1998.[19]Arridge,S.R.andSimmons,A.,Multi-spectral
probabilisticdiffusionusingBayesianclassifica-tion,inRomeny,B.terHaar,Florack,L.,Koen-dernick,J.andViergever,M.(Eds.).,Scale-SpaceTheoryinComputerVision,LectureNotesinCom-puterScience,Springer,Berlin,Vol.1252,pp.224-235,1997.[20]Chambolle,A.,PartialDifferentialEquationsand
ImageProcessing,inProc.FirstIEEEInt.Conf.onImageProcessing,Austin,Texas,pp.16-20,Nov.1994.[21]Morel,J.-M.andSolimini,S.,VariationalMethods
inImageSegmentation,Boston,MA,Birkhauser,ISBN:0-8176-3720-6,1995.[22]Sapiro,G.,GeometricPartialDifferentialEqua-tionsandImageAnalysis,CambridgeUniver-sityPress,Cambridge,MA,ISBN0-521-79075-1,2001.[23]Weickert,J.,Fastsegmentationmethodsbased
onpartialdifferentialequationsandthewater-shedtransformation,InLevi,P.,Ahlers,R.-J.,May,F.andSchanz,M.,(Eds.):Mustererkennung,Springer,Berlin,ISBN3-519-02606-6,pp.93-199,1998.[24]Weickert,J.andSchn¨orr,C.,PDE-basedprepro-cessingofmedicalimages,K¨unstlicheIntelligenz,
No.3,pp.5-10,2000,revisedversionofTechni-calReport8/2000,ComputerScienceSeries,Uni-versityofMannheim,Mannheim,Germany,Feb.
2000.
[25]Schn¨orr,C.,Uniquereconstructionofpiecewise
smoothimagesbyminimizingstrictlyconvexnon-quadraticfunctions,J.Math.Imag.Vision,Vol.4,No.2,pp.189-198,1994.[26]Schn¨orr,C.,Astudyofaconvexvariationaldiffu-sionapproachforimagesegmentationandfeature
extraction,J.Math.Img.,Vision,Vol.8,No.3,pp.271-292,1998.[27]Catte,F.,Lions,P.-L.,Morel,J.M.andColl,T.,
Imageselectivesmoothingandedgedetectionbynonlineardiffusion-I,SIAMJ.Numer.Anal.,Vol.29,No.1,pp.182-193,1992.[28]Catte,F.,Lions,P.-L.,Morel,J.M.andColl,T.,
Imageselectivesmoothingandedgedetectionbynonlineardiffusion-II,SIAMJ.Numer.Anal.,Vol.29,No.3,pp.845-866,1992.[29]Witkin,A.,Scale-spacefiltering,InInt.JointConf.
onArtificialIntelligence,pp.1019-1022,1983.[30]Sapiro,G.,Tannenbaum,A.,You,Y.L.andKaveh,
M.,Experimentsongeometricimageenhance-ment,inProc.FirstIEEEInt.ConferenceonImageProcessing,Austin,TX,Nov.1994.[31]Sapiro,G.andCaselles,V.,ContrastEnhancement
ViaImageEvolutionFlows,GraphicalModelsandImageProcessing,Vol.59,No.6,pp.407-416,1997.[32]You,Y.L.,Xu,W.,Tannenbaum,A.andKaveh,
M.,Behavioralanalysisofanisotropicdiffusioninimageprocessing,IEEETrans.onImageProcess-ing,Vol.5,No.11,pp.1539-1553,1996.[33]Sapiro,G.,Fromactivecontourstoanisotropicdif-fusion:ConnectionsbetweenbasicPDE’sinimageprocessing,inProc.ofIEEEInt.Conf.inImageProcessing,Vol.1,pp.477-480,Sept.1996.[34]Canny,J.,Acomputationalapproachtoedgedetec-tion,IEEETrans.onPatternAnalysisandMachineIntelligence,Vol.8,No.6,pp.679-698,1986.[35]Pollak,I.,Willsky,A.S.andKrim,H.,ImageSeg-mentationandEdgeEnhancementwithStabilizedInverseDiffusionEquations,IEEETrans.onImageProcessing,Vol.9,No.2,pp.256-266,Feb.2000.[36]Shah,J.,Acommonframeworkforcurveevo-lution,segmentationandanisotropicdiffusion,inProc.ofIEEEProc.Conf.ComputerVisionandPatternRecognition,pp.136-142,June1996.
[37]Bajla,I.andHollander,I.,Nonlinearfiltering
ofmagneticresonancetomogramsbygeometry-drivendiffusion,MachineVisionandApplications,Vol.10,No.5-6,pp.243-255,1998.[38]Olver,P.J.,Sapiro,G.andTannenbaum,A.,Clas-sificationanduniquenessofinvariantgeometricflows,ComptesRendusDeL’AcadmieDesSci-ences./SrieIMathmatique,Paris,319,SerieI,pp.339-344,1994.[39]Scherzer,O.andWeickert,J.,Relationsbetween
regularizationanddiffusionfiltering,J.Math.ImagingVision,Vol.12,No.1,pp.43-63,2000.[40]Romeny,B.terHaar,Florack,L.,Koendernick,J.
andViergever,M.,Scale-SpaceTheoryinCom-puterVision,LectureNotesinComputerScience,Springer,Berlin,ISBN:3-540-63167-4,Vol.1252,1997.[41]Romeny,B.terHaar,Geometry-DrivenDiffu-sioninComputerVision,ISBN0-7923-3087-0,Kluwer,Boston,MA,1994.[42]Nielsen,M.,Johansen,P.,Olsen,O.F.andWe-ickert,J.,Scale-SpaceTheoriesinComputerVi-sion,LectureNotesinComputerScience,Springer,Berlin,3-540-66498-X,Vol.1682,1999.[43]Meer,P.,Mintz,D.,Rosenfeld,A.andKim,D.Y.,
Robustregressionmethodsforcomputervision:Areview,Int.JournalinComputerVision,Vol.6,No.1,pp.59-70,1991.[44]Suri,J.S.,Haralick,R.M.andSheehan,F.H.,
LeftVentricleLongitudinalAxisFittingandLVApexEstimationUsingaRobustAlgorithmanditsPerformance:AParametricApexModel,Proc.oftheInternationalConferenceinImageProcessing,SantaBarbara,CA,IEEE,VolumeIIIofIII,ISBN:0-8186-8183-7/97,pp.118-121,1997.[45]Suri,J.S.andGao,J.,ImageSmoothingUsing
PDE,Scale-SpaceandMathematicalMorphology,SubmittedforInt.Conf.inVisualization,ImagingandImageProcessing,2001.[46]Sanchez-Ortiz,G.I.,Rueckert,D.andBurger,P.,
Knowledge-basedtensoranisotropicdiffusionofcardiacmagneticresonanceimages,MedicalIm-ageAnalysis,Vol.3,No.1,pp.77-101,1999.[47]Rudin,L.I.,Osher,S.andFatemi,E.,Nonlinearto-talvariationbasednoiseremovalalgorithms,Phys-icaD,Vol.60,pp.259-268,1992.[48]Weickert,J.,Heers,J.,Schnorr,C.,Zuiderveld,K.
J.,Scherzer,O.andStiehl,H.S.,Fastparallelal-gorithmsforabroadclassofnonlinearvariationaldiffusionapproaches,Real-TimeImaging,Vol.7,No.1,pp.31-45,Feb.2001.
[49]Sarti,A.,Ortiz,C.,Locket,S.andMalladi,R.,A
GeometricModelfor3-DConfocalImageAnaly-sis,IEEETrans.onBiomedicalEngineering,Vol.47,No.12,pp.1600-1609,Dec.2000.[50]Kichenassamy,S.,Kumar,A.,Olver,P.,Tan-nenbaum,A.andYezzi,A.,Conformalcurvatureflows:fromphasetransitionstoactivevision,Arch.RationalMech.Anal.,Vol.134,pp.275-301,1996.[51]Yezzi,A.,Kichenassamy,S.,Kumar,A.,Olver,P.
andTannenbaum,A.,Snakemodelforsegmenta-tionofmedicalimagery,IEEETran.inMed.Imag.,Vol.16,No.2,pp.199-209,1997.[52]Malladi,R.andSethian,J.A.,AnO(NlogN)al-gorithmforshapemodeling,AppliedMathematics,Proc.Natl.Acad.Sci.(PNAS),USA,Vol.93,No.18,pp.9389-9392,Sept.1996.[53]Paragios,N.andDeriche,R.,CoupledGeodesic
ActiveRegionsforImageSegmentation:Alevelsetapproach,IntheSixthEuropeanConferenceonComputerVision(ECCV),TrinityCollege,Dublin,Ireland,Vol.II,pp.224-240,26thJune-1stJuly,2000.[54]Courant,R.,Friedrichs,K.O.andLewy,H.,On
thepartialdifferenceequationsofmathematicalphysics,IBMJournal,Vol.11,pp.215-235,1967.[55]Siddiqi,K.,Lauriere,Y.B.,Tannenbaum,A.and
Zucker,S.W.,Areaandlengthminimizingflowsforshapesegmentation,IEEETrans.inImagePro-cessing,Vol.7,No.3,pp.433-443,1998.[56]Kimia,B.B.,Tannenbaum,A.R.andZucker,S.
W.,Shapes,shocksanddeformations,I:Thecom-ponentsofshapeandthereaction-diffusionspace,Int.JournalofComputerVision(IJCV),Vol.15,No.3,pp.189-224,1995.[57]Siddiqi,K.,Tresness,K.J.andKimia,B.B.,Parts
ofvisualform:Ecologicalandpsychophysicalas-pects,Perception,Vol.25,No.4,pp.399-424,1996.[58]Stoll,P.,Tek,H.andKimia,B.B.,Shocksfromim-ages:Propagationoforientationelements,InPro-ceedingsofComputerVisionandPatternRecogni-tion(CVPR),PuertoRico,IEEEComputerSocietyPress,pp.839-845,June15-16,1997.[59]Zhao,H.K.,Chan,T.,Merriman,B.andOsher,
S.,Avariationallevelsetapproachtomultiphasemotion,J.ComputationalPhysics,Vol.127,No.1,pp.179-195,1996.[60]Evans,L.C.andSpruck,J.,Motionoflevelsetsby
meancurvature:Part-I,J.ofDifferentialGeometry,Vol.33,pp.635-681,1991.
因篇幅问题不能全部显示,请点此查看更多更全内容