一元一次方程模型的应用(难点)
1.一般步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)验算;(6)作答。
弄清题目中“几倍、多、少、差、几分之几”等关键词体现的等量关系。 解方程模型应用的几种类型
一元一次方程应用题的解题关键就是:先找出等量关系,根据基本量设未知数。一般是问什么设什么,但是一些特殊的题目为了使方程简便有时会设一些中间量为未知数。解方程应用题的关键就是要“抓住基本量,找出相等关系”。
找等量关系:①从题目中的关键语句入手寻找等量关系;②利用某些基本公式寻找等量关系;③从变化的关系中寻找不变的量,进而找到等量关系。 主要的应用模型有以下几类:
不管是什么问题,关键是要了解各个具体问题所具有的基本量,并了解各个问题所本身隐含的等量关系,结合具体的问题,根据等量关系列出方程。 (一)行程问题
行程问题中有三个基本量:路程、时间、速度。 等量关系为:①路程=速度×时间; ②速度=路程/时间; ③时间=路程/速度 1.航行问题
①顺水(风)速度=静水(无风)速度+水流速度(风速); ②逆水(风)速度=静水(无风)速度-水流速度(风速)。 由此可得到航行问题中一个重要等量关系:
顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。 2.相遇问题
A走的路程+B走的路程=两地之间的距离 3.追击问题
同时不同地出发:A走的路程-B走的路程=被追赶的路程(A、B出发时相距的距离) 4.环形问题
(1)同向行驶,如果A速度较快,则A走的路程-B走的路程=n环/圈(n表示第n次相遇)
(2)反向行驶,A走的路程+B走的路程=n环/圈(n表示第n次相遇) (二)工程问题
1.工程问题的基本量有:工作量、工作效率、工作时间。关系式为:工作量=工作效率
×工作时间;
工作时间=工作量/工作效率;工作效率=工作量/工作时间。
2.工程问题中,在工作总量不明的情况下一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为1/t。 3.常见的相等关系有两种:
①如果以工作量作相等关系,A工作量+B工作量 =总工作量。
②如果以时间作相等关系,对于同一工作:A工作时间-B工作时间=时间差 一般情况下,合作的工作效率=A工作效率+B工作效率 (三)销售计费问题
销售类问题主要体现为三大类:①销售利润问题、②存贷问题。这三类问题的基本量各不相同,在寻找相等关系时,一定要联系实际生活情景去思考,才能更好地理解问题的本质,正确列出方程。 (1)价格费用问题
费用问题中的基本量:费用(总价)、单价、数量 基本关系式有
费用(总价)=单价×数量
分段计费:总费用=第一阶段单价×数量+第二阶段单价×数量+…… (2)销售利润问题
利润问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。 基本关系式有:
利润=销售价(收入)-成本(进价); 成本(进价)=销售价(收入)-利润; 利润率=
利润成本(进价)
;
利润=成本(进价)×利润率。
在有折扣的销售问题中,实际销售价=标价×折扣率。打折问题中常以进价不变作相等关系。
打折:n折即表示标价的n/10,如7折为70% (3)存贷问题(利息、利润问题)
存贷问题中有本金、利息、利率、本息等基本量。 其关系式有:
①利息=本金×利率×期数; ②本息和(本利)=本金+利息 (四)溶液配比问题
溶液配比问题中有四个基本量:溶质(纯净物)、溶剂(杂质)、溶液(混合物)、浓度(含量)。其关系式为:
溶液=溶质+溶剂(混合物=纯净物+杂质); 浓度=
溶质溶液
×100%=
溶质
溶质+溶剂
×100%;
纯净物纯净物+杂质
纯度(含量)=
纯净物混合物
×100%=×100%。
由①②可得到:溶质=浓度×溶液=浓度×(溶质+溶剂)。 (五)数字问题
一元一次方程应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:
任何数=∑(数位上的数字×位权) (54=5×10+4) 如两位数ab= 10a + b;三位数abc= 100a + 10b + c
练习:
行程问题:
1、甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米? 2、矿山爆破为了确保安全,点燃引火线后人要在爆破前转移到3000米以外的安全地带,引火线燃烧的速度是0.8厘米/秒,人离开的速度是5米/秒,问引火线至少需要多少厘米?
3、一列车车身长200米,它经过一个隧道时,车速为每小时60千米,从车头进入隧道到车尾离开隧道共2分钟,求隧道长。
4、一艘轮船从甲地顺流而行9小时到达乙地,原路返回需要11小时才能到达甲地,已知水流速度为2千米/时,求轮船在静水中的速度。
5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
配套问题:
1.某车间100个工人,每人平均每天可加工甲零件18个或乙零件24个,要使每天加工的甲、乙零件配套(4个甲零件配3个乙零件),应如何分配工人加工甲零件和乙零件?
2、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
3、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
数字问题:
1、三个连续奇数的和是387,求这三个奇数。
2、三个连续偶数的和是18,求它们的积
3、在日历上任意画一个含有9个数字的方框(3╳3),然后把方框中的9个数字加起来,结果等于90,试求出这9个数字正中间的那个数。
4、有一个两位数,十位数字比个位数字的2倍多1,将两个数字对调后,所得的数比原数小36,求原数。
5、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
打折问题:
1、某商店从某公司批发部购100件A钟商品,80件B种商品,共花去2800元,在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部售出后共收入3140元,问A、B两种商品的买入价各为多少元?
2、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
3、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?
工程问题:
1、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? .
2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
3、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几? (2)如果单独打开出水管,每小时可以放出的水占水池的几分之几? (3)如果将两管同时打开,每小时的效果如何?如何列式?
(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?
4.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开 乙管,5小时注满水池。
① 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把 水池注满?
② 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三 管同时开放,多少小时才能把一空池注满水?
年龄问题:
1、某中学初一学生小刚今年13岁,属羊,非常巧合的是,小刚的爷爷也是属羊的,而且两个人的年龄的和是86,你能算出小刚爷爷的年龄吗?
2、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________. 3、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
等积变形问题:
1、用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.
(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.
(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.
(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).
(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.
2、将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
古典数学:
1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。
2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
溶液问题: 1、现有浓度为20%的盐水300克和浓度为30%的盐水200克,需配制成浓度为60%的盐水,问两种溶液全部混合后,还需加盐多少克? 2、要把浓度为90%的酒精溶液500克,稀释成浓度为75%的酒精溶液,需加水多少克.
方案问题:
1、某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果
租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?
2、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?
(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.
其它:
1、一批宿舍,若每间住1人,有10人无处住,若每间住3人,则有10间无人住,那么这批宿舍有多少间,人有多少个?
2、一运输队运输一批货物,每辆车装8吨,最后一辆车只装6吨,如果每辆车装7.5吨,则有3吨装不完。运输队共有多少辆车?这批货物共有多少吨?
因篇幅问题不能全部显示,请点此查看更多更全内容