您的当前位置:首页正文

On the Computational Complexity of Assumption-based Argumentation for Default Reasoning

来源:一二三四网
OntheComputationalComplexityofAssumption-basedArgumentationforDefault

Reasoning

YannisDimopoulos

UniversityofCyprusDept.ofComputerScienceyannis@cs.ucy.ac.cy

BernhardNebel

Universit¨atFreiburgInstitutf¨urInformatiknebel@uni-freiburg.de

FrancescaToni

ImperialCollegeDept.ofComputingft@doc.ic.ac.uk

Abstract

Bondarenkoetal.haverecentlyproposedanabstractframeworkfor

defaultreasoning.Besidescapturingmostexistingformalismsandprov-ingthattheirstandardsemanticsallcoincide,theframeworkextendstheseformalismsbygeneralisingthesemanticsofadmissibleandpreferredargu-ments,originallyproposedforlogicprogrammingonly.

Inthispaperweanalysethecomputationalcomplexityofcredulousandscepticalreasoningunderthesemanticsofadmissibleandpreferredargu-mentsfor(thepropositionalvariantof)theinstancesoftheabstractframe-workcapturingtheorist,circumscription,logicprogramming,defaultlogic,andautoepistemiclogic.Althoughthenewsemanticshavebeentacitlyas-sumedtomitigatethecomputationalhardnessofdefaultreasoningunderthestandardsemanticsofstableextensions,weshowthatinmanycasesreason-ingundertheadmissibilityandpreferabilitysemanticsiscomputationallyharderthanunderthestandardsemantics.Inparticular,inthecaseofau-toepistemiclogic,scepticalreasoningunderpreferredargumentsislocatedatthefourthlevelofthepolynomialhierarchy,whereasthesameformofreasoningunderstableextensionsislocatedatthesecondlevel.

1

1Introduction

Bondarenkoetal.[1]showthatmanylogicsfordefaultreasoning,i.e.,theorist[25],(manycasesof)circumscription[20],DefaultLogic(DL)[26],Nonmono-tonicModalLogic[21],AutoepistemicLogic(AEL)[22],andLogicProgram-ming(LP)canbeunderstoodasspecialcasesofasingleabstractframework.Thestandardsemanticsofalltheselogicscanbeunderstoodassanctioningasetofassumptionsasastableextensionofagiventheory,formulatedinanunderlyingmonotoniclogic,iffthesetofassumptionsdoesnotattackitselfanditattackseveryassumptionnotintheset.Inabstractterms,anassumptioncanbeattackedifitscontrarycanbeproved,intheunderlyingmonotoniclogic,possiblywiththeaidofotherconflictingassumptions.

Bondarenkoetal.alsoproposetwonewsemanticsgeneralising,respectively,theadmissibilitysemantics[8]andthesemanticsofpreferredextensions[8]orpartialstablemodels[27]forLP.Inabstractterms,asetofassumptionsisanadmissibleargumentofagiventheory,formulatedinanunderlyingmonotoniclogic,iffitdoesnotattackitselfanditattacksallsetsofassumptionswhichattackit.Asetofassumptionsisapreferredargumentiffitisamaximal(withrespecttosetinclusion)admissibleargument.

Thenewsemanticsaremoregeneralthanthestabilitysemanticssinceeverystableextensionisapreferred(andadmissible)argument,butnoteverypreferredargumentisastableextension.Moreover,thenewsemanticsaremoreliberalbecauseformostconcretelogicsfordefaultreasoning,admissibleandpreferredargumentsarealwaysguaranteedtoexist,whereasstableextensionsarenot.Fi-nally,reasoningunderthenewsemanticsappearstobecomputationallyeasierthanreasoningunderthestabilitysemantics.Intuitively,toshowthatagivensen-tenceisjustifiedbyastableextension,itisnecessarytoperformaglobalsearchamongstalltheassumptions,todetermineforeachsuchassumptionwhetheritoritscontrarycanbederived,independentlyofthesentencetobejustified.Forthesemanticsofadmissibleandpreferredarguments,however,a“local”searchsuffices.First,onehastoconstructasetofassumptionswhich,togetherwiththegiventheory,(monotonically)derivesthesentencetobejustified,andthenonehastoaugmenttheconstructedsetwithfurtherassumptionstodefenditagainstallattacks[18,6,7].

However,fromacomplexity-theoreticpointofview,itseemsunlikelythatthenewsemanticsleadtobetterlowerboundsthanthestandardsemanticssinceallthe“sourcesofcomplexity”onehasindefaultreasoningarestillpresent.Therearepotentiallyexponentiallymanyassumptionsetssanctionedbythesemantics.Further,inordertotestwhetherasentenceisentailedbyaparticularargument,onehastoreasonintheunderlyingmonotoniclogic.Forthisreason,onewouldexpectthatreasoningunderthenewsemanticshasthesamecomplexityasunderthestabilitysemantics,i.e.,itiscompleteforthefirstlevelofthepolynomialhierarchyforLPandonthesecondlevelforlogicswithfullpropositionallogicastheunderlyinglogic[3].However,previousresultsontheexpressivepowerofDATALOGqueriesbySacc`a[28]suggestthatthisisnotthecaseforLP.Indeed,Sacc`a’sresultsimplythatreasoningunderthepreferabilitysemanticsforLPisatthesecondlevelofthepolynomialhierarchy.

Inthispaperweextendthisanalysisandprovidecomplexityresultsforrea-soninginthepropositionalvariantsoftheorist,circumscription,LP,DL,andAELunderthenewsemantics.Asitturnsout,reasoningunderthenewsemanticscanbemuchharderthanreasoningunderthestandardsemantics.Inparticular,weshowthatscepticalreasoninginDLunderthepreferabilitysemanticsisonthethirdlevelofthepolynomialhierarchy,thatcredulousreasoninginAELundertheadmissibilitysemanticsisonthethirdlevelofthepolynomialhierarchy,andthatscepticalreasoninginAELunderthepreferabilitysemanticsisonthefourthlevelofthepolynomialhierarchy.

Thepaperisorganisedasfollows.Section2summarisesrelevantfeaturesoftheabstractframeworkof[1],itssemanticsandconcreteinstances.Section3givescomplexitytheorybackgroundandintroducesthereasoningproblems.Sec-tion4givesgenericupperboundsforcredulousandscepticalreasoning,para-metricwithrespecttothecomplexityoftheunderlyingmonotoniclogics.Thegenericresultsareinstantiatedtoprovideupperboundsforconcreteinstancesoftheabstractframework.Section5givesthencompletenessresultsfortheoristandcircumscription,Section6givesthecompletenessresultsforLPandDL,andSec-tion7givesthecompletenessresultsforAEL.Section8discussestheresultsandconcludes.

2DefaultReasoningviaArgumentation

issomeformallanguagewithAssumeadeductivesystem(,),where

countablymanysentencesandisasetofinferencerulesinducingamono-andaformula,tonicderivabilitynotion.Givenatheory

isthedeductiveclosureof.Then,anabstract

(assumption-based)frameworkisatripleisamappingfrominto.,thetheory,isasetofbeliefs,formulatedintheun-derlyinglanguage,andcanbeextendedbysubsetsof,thesetofassumptions.Indeed,anextensionofanabstractframework

denotesthecontraryof.

Theoristcanbeunderstoodasaframework

ability.

Manycasesofcircumscriptioncanbeunderstoodsimilarly,exceptthattheassumptionsarenegationsofatomicsentences,forallpredicateswhichareminimised,andatomicsentencesortheirnegations,forallpredicateswhicharefixed.

LPistheinstanceoftheabstractframework

ofanassumption

isjustitsnegation.

isordinaryclassicalprov-

ofanassumptionis.isHornlogicprovability,withassump-tions,,understoodasnewatoms,asin[12].DListheinstanceoftheabstractframework

wherearesentencesinclassicallogic.isaclassicaltheoryandconsistsofallexpressionsoftheformwhereisasentenceofclassicallogic.Thecontrary

Namely,allcaseswhereeverymodelofthetheorytobecircumscribedisaHerbrandmodelofthetheory,see[1]formoredetails.

4

Givenanabstractframework

;

attacksanassumptionset.

iff

attackssomeassumption

isclosediff,Giventhatanassumptionset

thestandardsemanticsofextensionsoftheorist[25],minimalmodelsofcircum-scription[20],extensionsofDL[26],stableexpansionsofAEL[22],andstablemodelsofLP[14]correspondtothestabilitysemanticsofabstractframeworks,whereanassumptionsetisstableiff

1.2.3.

isclosed,

doesnotattackitself,andattackseachassumption

.

AssumptionsetsarealwaysclosedinthecaseofLPandDL.Frameworkswiththispropertyarereferredtoasflat[1].Assumptionsetsmightnotbeclosed

inAEL,theinthecaseofAEL.Forexample,giventhetheory

emptyassumptionsetisnotclosed.Furthermore,assumptionsetsmightnotbeclosedinthecaseoftheoristandcircumscription.Forexample,ifaformulaisanassumptionintheoristthatisalreadyderivedbythetheory,thentheemptyassumptionsetisnotclosed.

Astableextensionisanextensionforsomestableassumptionset.Thestandardsemanticsofcircumscription[20]correspondstotheintersectionofallstableextensionsoftheabstractframeworkcorrespondingtocircumscrip-tion.

Bondarenkoetal.arguethatthestabilitysemanticsisunnecessarilyrestric-tive,becauseitinsiststhatanassumptionsetshouldtakeastandoneveryissue(assumption).Thus,theydefinenewsemanticsfortheabstractframework,bygeneralisingtheargumentation-theoreticreformulationof[17]forthesemanticsoriginallyproposedforLPbyDung[8].Thenewsemanticsaredefinedintermsof“admissible”and“preferred”setsofassumptions/extensions.Anassumptionsetisadmissibleiff

1.

isclosed,

5

2.

doesnotattackitself,and

3.forallclosedsetsofassumptions

.

,if

attacks

then

attacks

Maximal(withrespecttosetinclusion)admissibleassumptionsetsarecalledpreferred.Inthispaperweusethefollowingterminology:anadmissible(pre-forsomeadmissible(preferred)ferred)argumentisanextension

assumptionset.Bondarenkoetal.showthatpreferredargumentscorrespondtopreferredextensions[8]andpartialstablemodels[27]forLP.

Everystableassumptionset/extensionispreferred(andthusadmissible)[1,Theorem4.6],butnotviceversa,ingeneral.However,iftheframeworkisnor-mal,i.e.,ifeverymaximalclosedassumptionsetthatdoesnotattackitselfisastableset,thenthesemanticsofpreferredandstableassumptionsetscoincide[1,Theorem4.8].Theoristandcircumscriptionarenormalframeworks,whichimpliesthatstabilityandpreferabilitysemanticsareidenticalinthesecases.Inthesequelwewillusethefollowing:

(Prop):Everypreferredassumptionsetis(trivially)admissibleandeveryad-missibleassumptionsetisasubsetofsomepreferredassumptionset;

(Prop):Theemptyassumptionsetisalwaysadmissible,trivially,forallflat

frameworks;

(Prop):Everypreferredextensionisstableandeverystableextensionispre-ferred,forallnormalframeworks.

Moreover,foranygivensemanticsamongstthestability,admissibilityandpreferabilitysemantics,wewillusetheterminologythat“asetofassumptionsis

sanctionedbyasemantics”tomeanthatthesetofassumptionsisstable/admissible/preferred,respectively.

3

ReasoningProblemsandComputationalComplex-ity

Wewillanalysethecomputationalcomplexityofthefollowingreasoningprob-lemsforthepropositionalvariantsoftheframeworksfortheorist,circumscription,LP,DL,andAELunderadmissibilityandpreferabilitysemantics:

6

thecredulousreasoningproblem,i.e.,theproblemofdecidingforany

whetherforsomeassumptionsetgivensentence

sanctionedbythesemantics;

thescepticalreasoningproblem,i.e.,theproblemofdecidingforanygivensentencewhetherforallassumptionsetssanctionedbythesemantics.

Insteadofthescepticalreasoningproblem,wewilloftenconsideritscomplemen-taryproblem,i.e.

theco-scepticalreasoningproblem,i.e,theproblemofdecidingforanygivensentencewhetherforsomeassumptionsetsanctionedbythesemantics.

Notethatwearenotadvocatingco-scepticalreasoningasinterestingorusefulepistemologically.Rather,weuseittosupportourcomplexityanalysis.

Inaddition,wewillconsiderasub-problemofalltheseproblems,namely:

theassumptionsetverificationproblem,i.e.,theproblemofdecidingwhetheragivensetofassumptionsissanctionedbythesemantics.

Webrieflyrevisefundamentalnotionsfromcomplexitytheory.Weassumefa-miliaritywiththecomplexityclasses,,and-,andwiththenotionsofmany-one-reductions,Turingreductions,andhardnessandcompletenesswithrespecttothesereductions.

Thecomplexityoftheaboveproblemsforallframeworksandsemanticsweconsiderislocatedatthelowerendofthepolynomialhierarchy.Thisisa(pre-sumably)infinitehierarchyofcomplexityclassesaboveNPdefinedbyusingor-aclemachines,i.e.Turingmachinesthatareallowedtocallasubroutine—theoracle—decidingsomefixedprobleminconstanttime.Letbeaclassofde-cisionproblems.Then,denotestheclassofproblemsthatcanbesolvedonadeterministicoraclemachineinpolynomialtimewithanoraclethatdecidesaproblemin.Ingeneral,foranyclassdefinedbyresourcebounds,denotestheclassofproblemsdecidableonaTuringmachinewitharesourceboundgiven

byandanoracleforaproblemin.Basedonthesenotions,thesets

aredefinedasfollows:and

,

,

-

The“canonical”completeproblemsareSATfor=NPand-QBFfor

(),where-QBFistheproblemofdecidingwhetherthequantifiedbooleanformula

alternatingquantifiersstartingwith

istrue,foraformula.Theaboveproblemsremaincompletefortheirrespective

classeswhentheinnermostquantifierisandtheformulaisin3CNF,aswellaswhentheinnermostquantifierisandtheformulaisin3DNF[30].Thecomplementaryofa-QBFproblem,denotedbyco--QBF,iscompletefor.Allproblemsinthepolynomialhierarchycanbesolvedinpolynomialtimeiff.Further,alltheseproblemscanbesolvedbyworst-caseexponentialtimealgorithms.Thus,thepolynomialhierarchymightnotseemtoomeaning-ful.However,differentlevelsofthepolynomialhierarchydifferconsiderablyinpractice,e.g.methodsworkingformoderatelysizedinstancesofNP-completeproblemsdonotworkfor-completeproblems.

Thecomplexityoftheproblemsweareinterestedinhasbeenextensivelystud-iedforexistinglogicsfordefaultreasoningunderthestandard,stabilityseman-tics[3,15,23,19,29,2,10].Table1givesapartialsummaryoftheseresultsforthedifferentlogics.Wenoteherethatthesemanticsofcircumscriptionhasbeenoriginallyproposedwithrespecttoscepticalreasoningonly.Inthiscase,asshownin[1],reasoningincircumscription(restrictedtoHerbrandmodels)coin-cideswithscepticalreasoningintheoristunderthestabilitysemantics.Moreover,wecannaturallyextendcircumscriptionanddefineitscredulousreasoningviaaone-to-onecorrespondencewithcredulousreasoningintheoristunderthestabil-itysemantics(see[1]formoredetails).Hencethecomplexityresultforcredulousreasoningincircumscriptionisadirectconsequenceoftherespectiveresultfor

theorist.Thecomplexityresultsforreasoningincircumscriptionunderthead-missibilitysemantics,presentedlaterinthepaper,canbeunderstoodinasimilarway.

scepticalreasoning

NP-complete-complete-complete-complete-complete

Table1:Existingcomputationalcomplexityresultsforthestabilitysemantics

4GenericUpperBounds

Inthissectionwegiveanumberofgenericupperboundsforreasoningundertheadmissibilityandpreferabilitysemanticsthatareparametriconthecomplexityofthederivabilityproblemintheunderlyingmonotoniclogic.Thisallowsustoderiveupperboundsforawiderangeofconcretelogicsfordefaultreasoning.InthecaseofLP,theunderlyinglogicispropositionalHornlogic,hencethederivabilityproblemisP-complete(underlog-spacereductions)[24,p.176].Inthecaseoftheorist,circumscriptionandAEL,theunderlyinglogicisclassicalpropositionallogic,hencethederivabilityproblemis--complete.Finally,inthecaseofDL,theunderlyingmonotonicderivabilityisclassicalderivabilityextendedwithdomain-specificinferencerules.However,theseextrainferencerulesdonotincreasethecomplexityofreasoning.Indeed,itisknown(e.g.see[16,p.90])thatforanyDL-likepropositionalmonotonicrulesystem,checkingwhetherisNP-complete.Therefore,thefollowingpropositionfollowsimmediately.

Proposition1GivenaDLframework

Inordertodecidethecredulousandco-scepticalreasoningproblems,onecanapplythefollowingnon-deterministicalgorithm:Algorithm2

1.Guessanassumptionset,

2.verifythatitissanctionedbythesemantics,and

3.verifythattheformulaunderconsiderationisderivablefromthesetofas-sumptionsandthemonotonictheoryornotderivablefromit,respectively.Fromthisitfollowsthatcredulousreasoningandco-scepticalreasoningisinthecomplexityclass,providedreasoningintheunderlyinglogicisinandtheverificationthatanassumptionsetissanctionedbythesemanticscanbedonewithpolynomiallymanycallstoa-oracle.Forthestabilitysemantics,weneedindeedonlypolynomiallymany-oraclecallsinordertoverifythattheassumptionsetisnotself-attackingandthatitisclosedandattacksallassumptions.However,fortheadmissibilityandpreferabilitysemanticstheverificationstepdoesnotseemtobesoeasy,assuggestedbythefollowingtheorem.

Theorem3Forframeworkswithanunderlyingmonotoniclogicwithaderivabil-ityproblemin,theassumptionsetverificationproblemis

ininin

underthestabilitysemantics,

--

undertheadmissibilitysemantics,and

underthepreferabilitysemantics.

Proof:Thefirstclaimfollowsfromtheargumentabovethatpolynomiallymany-oraclecallsaresufficienttoverifythatanassumptionsetisstable.

Inordertoprovethesecondclaim,wegivethefollowingnondeterministic,

isnotpolynomial-timealgorithmthatusesa-oracleanddecideswhether

admissible:

1.Checkwhether

isclosed.Ifnot,succeed,otherwisecontinue.

2.Guessanassumptionset

.10

3.Verifythat4.Verifythat5.Verifythat

isclosed,usingattacks

-oraclecalls.

,using

-oraclecalls.

doesnotattack

,using

-oraclecalls.

isnotadmissible,i.e.,itdecidestheObviously,thisalgorithmsucceedsiff

complementoftheassumptionsetverificationproblem,thusprovingtheclaim.Inordertoprovethethirdclaim,foranyassumptionsetthatwewanttoverify,wegivethefollowingnondeterministic,polynomial-timealgorithmthatusesan-oracle:

-oraclecall(bythesecond1.Checkwhetherisadmissible,usingone

claim).Ifitisnot,succeed.Otherwisecontinue.

2.Guessanassumptionset

.

isadmissible,usingone3.Checkwhether

claim).Ifitis,succeed.Otherwisefail.

-oraclecall(bythesecond

isnotpreferred.Thismeansitde-Obviously,thisalgorithmsucceedsiff

cidesthecomplementoftheassumptionsetverificationproblem,thusprovingtheclaim.

1.Checkwhetherattacksitself,usingpolynomiallymany-oraclecalls.Ifitdoes,succeed.Otherwisecontinue.

2.Computea-oracle.

doesnotattack

,using

callsto

3.Checkwhetherattacks,usingpolynomiallymany-oraclecalls.Ifitdoes,succeed.Otherwisefail.

Itiseasytoseethatifthisalgorithmsucceedsthenisnotadmissible,asattacksbut,by(2),doesnotattackand,by(1),doesnotattackitself.Moreover,ifthealgorithmfailsthenisadmissible.Indeed,letbeanyattackagainst.If,then,bymonotonicityoftheunderlyinglogic,attacks,thuscontradictingthatthealgorithmfails.Therefore,.Let.By(2),attacks.Thus,attacks,and,by(1),isadmissible.

ThesecondclaimofthetheoremfollowsbyreconsideringthealgorithmusedintheproofofTheorem3forthethirdclaim,butusing-oraclecallsatsteps(1)and(3).

Notethatiftheframeworkisnotflat,thentheassumptionsetmightnotbeclosed.Therefore,evenif(3)succeeds,canstillbeadmissible,asitmayattackanassumptionthatisderivablefrom.

12

Proposition6Credulousreasoningundertheadmissibilitysemanticsisequiva-lenttocredulousreasoningunderthepreferabilitysemantics.

Thus,itfollowsdirectlythatcredulousreasoningundertheadmissibilityse-manticshasthesameupperboundascredulousreasoningunderthepreferabilitysemantics.Inparticular,fornormalframeworkswegetthesameupperboundforcredulousreasoningundertheadmissibilitysemanticsasforthestabilityseman-tics.

Inaddition,co-scepticalandscepticalreasoningundertheadmissibilityse-manticsisoftenmuchsimplerthansuggestedbytheupperboundsoftherespec-tiveassumptionsetverificationproblemcombinedwithalgorithm2.Forexample,inflatframeworks

simpleiffthereisnoadmissibleassumptionsetwheneverisinconsistentintheunderlyingmonotoniclogic,andotherwisethereexistsaminimal(withrespect

.tosetinclusion)admissibleset

Proposition7Forflatframeworksandforsimpleframeworkswithanunderlying

monotoniclogicwithaderivabilityproblemin,thescepticalreasoningproblemundertheadmissibilitysemanticsisin.

Alltheresultsinthissectioncombinedwithalgorithm2givethenextthe-orem,specifyingupperboundsforthereasoningproblemsforallthetypesofframeworksconsideredsofar.

Theorem8Upperboundsforthedifferentreasoningproblems,typesofframe-works,andsemanticsareasspecifiedinthefollowingtable:Frameworks

scept.

general

Admissibility

scept.

scept.

--

-

-

flat

-

Notethatnotalldeductivesystemsunderlyinganabstractframeworkareequippedwithanotionofinconsistency.Forexample,theinstanceoftheframeworkforLPisnot.Moreover,notethatthenotionofinconsistencyisaseparatenotionfromthatofcontrary.

13

Proof:Theresultsforthestabilitysemanticsfollowfromapplyingalgorithm2,

oracle(byTheorem3),andwithstep(2)ofthealgorithmsolvablebyacalltoa

step(3)solvablebyacalltoa-oracle.Thisgivesanupperboundof,whichcoincideswith,forboththecredulousandco-scepticalreasoningproblems.Theresultsfortheadmissibilitysemanticsinthefirstrowandforscepticalreasoningunderthepreferabilitysemanticsinthefirstrowfollowbythesameargument.

TheresultforcredulousreasoningunderthepreferabilitysemanticsinthefirstrowfollowsfromProposition6andthecorrespondingresultfortheadmissibilitysemantics.

Theresultsforadmissibilityandpreferabilitysemanticsinthesecondrowarejustifiedasfollows.Credulousreasoningunderadmissibilityandpreferabilitysemanticsaswellasco-scepticalreasoningunderthepreferabilitysemanticscanbeshowntobein,whichequals,byusingalgorithm2andapplyingPropositions6and5.Further,theupperboundforscepticalreasoningundertheadmissibilitysemanticsisthegeneralupperboundgiveninthefirstrow.

TheresultsforadmissibilityandpreferabilitysemanticsinthethirdrowfollowbyapplyingProposition7forscepticalreasoningunderadmissibilityand,fortheothercolumns,algorithm2andTheorem4.

Finally,theresultsforadmissibilityandpreferabilitysemanticsinthefourthrowarethegeneralresultsinthefirstrow,withtheexceptionoftheresultforscepticalreasoningundertheadmissibilitysemanticsgivenbyProposition7.

Proof:Circumscriptionisaspecialinstanceoftheorist.Thus,weonlyneedtoprovethetheoremfortheorist.

Ifthegiventheoristtheoryisinconsistentthenthecorrespondingframeworkadmitsnoadmissibleargument,asanyclosedassumptionsetattacksitself.Assumethatisconsistent.Then,weonlyneedtoprovethatattackseveryclosedassumptionsetwhichattacks.Now,ifisnosetthatattacks.If,thenattacksiffand,asisclosed,.Thus,necessarilyattacks.

,thenthereisinconsistent6

FlatFrameworks:LogicProgrammingandDe-faultReasoning

Asinthecaseoftheoristandcircumscription,inthecaseofLPandDLtheupperboundsspecifiedinTheorem8aretight.

SincetheconcreteframeworkforLPisflat,scepticalreasoningundertheadmissibilitysemanticsreducestoreasoningintheunderlyingmonotoniclogic,i.e.,derivabilityinpropositionalHorntheories,whichisP-complete.

Proposition13ScepticalreasoninginLPundertheadmissibilitysemanticsisP-complete.

FromTheorem8,againbecausetheLPframeworkisflat,credulousreason-,whichequalsingundertheadmissibilityandpreferabilitysemanticsisin

NP.NP-completenesscanbeobtainedasadirectcorollaryofanearlierresultbySacc`a[28],thattheexpressivepowerofDATALOGqueriesunderthe“pos-sibleM-stablesemantics”(correspondingtocredulousreasoningunderthead-missibilityandpreferabilitysemantics)coincideswithDB-NP,i.e.theclassofalldatabasesthatarerecognisableinNP.Fromthisresultthefollowingtheoremfollowsimmediately.

Theorem14CredulousreasoninginLPundertheadmissibilityandpreferabilitysemanticsisNP-complete.

AgainfromTheorem8,scepticalreasoninginLPunderthepreferabilityse-manticsisinco-,whichcoincideswith.-completenesscanbeob-tainedagainasadirectcorollaryoftheresultprovenagainbySacc`a[28],thatthe

expressivepowerofDATALOGqueriesunderthe“definiteM-stablesemantics”(correspondingtoscepticalpreferabilitysemantics)coincideswiththeclassDB-,i.e.theclassofalldatabasesthatarerecognisableinDB-.Fromthisresultthefollowingtheoremfollowsimmediately.

Theorem15ScepticalreasoninginLPunderthepreferabilitysemanticsiscomplete.

-

Therefore,forLP,credulousreasoningunderadmissibilityandpreferabilitysemanticshasthesamecomplexityasunderthestabilitysemantics(seeTable1),

16

whereasscepticalreasoningiseitheronelevellowerbuttrivial,undertheadmissi-bilitysemantics,oronelevelhigher,underthepreferabilitysemantics,thanunderthestabilitysemantics.

SincetheinstanceoftheframeworkforDLisflat,scepticalreasoningun-dertheadmissibilitysemanticsreducestoreasoningintheunderlyingmonotoniclogic,i.e.,derivabilityinpropositionalclassicallogic,whichisco-NP-complete.Proposition16ScepticalreasoninginDLundertheadmissibilitysemanticsisco-NP-complete.

ByProposition6,credulousreasoningunderthepreferabilitysemanticsco-incideswithcredulousreasoningundertheadmissibilitysemantics.FromTheo-rem8,credulousreasoningundertheadmissibilityandpreferabilitysemanticsisin,whichcoincideswith.-hardness,andtherefore-completeness,canbeprovenbyareductionfrom2-QBF.

Theorem17CredulousreasoninginDLundertheadmissibilityandpreferabilitysemanticsis-complete.

Proof:ByProposition6,itsufficestoprovethetheoremfortheadmissibilitysemantics.MembershipfollowsfromTheorem8.Toprovehardness,weuseastraightforwardreductionfrom2-QBFtothecredulousreasoningproblemundertheadmissibilitysemantics.

,withaAssumethequantifiedbooleanformula

formulain3DNFoverthepropositionalvariables.Wecon-structaDLtheorysuchthatthegivenquantifiedbooleanformulaistrueiffsomeadmissibleargumentfortheframeworkcorrespondingtocontains.Letconsistsofthedefaultrules

foreach,simulatingthechoiceofatruthvalueforeachpropositional

variablein.Obviously,canbeconstructedinlog-space.Moreover,itiseasytoseethatthegiven2-QBFistrueiffthereexistsanadmissibleextensionoftheframeworkcorrespondingtocontaining.

Theorem18ScepticalreasoninginDLunderthepreferabilitysemanticsiscomplete.

-

Proof:MembershipfollowsfromTheorem8.Toprovehardness,weuseare-ductionfrom3-QBFtotheco-scepticalreasoningproblemunderthepreferabilitysemantics.

Assumethequantifiedbooleanformula

withaformulain3CNFoverthepropositionalvariables,,

.WeconstructaDLtheorysuchthatistrueiffsomesentenceisnotcontainedinsomepreferredargumentfortheframeworkcorrespondingto.

Thelanguageofcontainsatoms,,andaswellasatoms,,intuitivelyholdingtrueiffatruthvalueforthevariables,,respectively,hasbeenchosen.consistsofthedefaultrules

foreach

andin,

,

,simulatingthechoiceofatruthvalueforeach

foreach

setcontains

,oranyof

toguaranteethatnoadmissibleassumptionand.

18

Obviously,canbeconstructedinlog-space.Moreover,weprovethatistrueiffthereisapreferredargumentnotcontaining.Inotherwords,the3-QBFcanbereducedtoco-scepticalreasoninginDLunderthepreferabilitysemantics.

Inthesequelwewillusethefollowingterminology.Ifisatruthassignmenttothe’s,wedenotebytheassumptionset

Similarly,ifset

isatruthassignmenttothe

’s,wedenoteby

theassumption

Firstofall,itisobviousthatnoadmissibleassumptionsetcancontainanyoftheassumptions,,(as,ifitdid,itwouldattackitself).Furthermore,itiseasytoseethatforanytruthassignmenttothe’s,thesetisanadmissi-bleset.Moreover,everypreferredassumptionsetmustcontainasetforsometruthassignmenttothe’s.Finally,ifisnotpreferred,thenthereexistsatruthassignmenttothe’ssuchthatispreferred.

Assumethatistrueunderaparticulartruthassignmenttothe’s.Obvi-ously,doesnotderive.Weshowthatthesetisapreferredassumptionset.

bytheset,forsometruthSupposethatitisnot,andthatwecanextend

assignmenttothe’s,thusobtaininganadmissibleset.Then,counterattackstheattack,i.e.belongstotheextensiongivenby.Asaconsequence,isnottrueunderthetruthassignment:contradiction.Conversely,assumethattheframeworkcorrespondingtoadmitsapre-ferredargumentthatdoesnotderive.Weprovethatistrue.Clearlythereexistssometruthassignmenttothe’ssuchthat.Sinceispreferredanditdoesnotcontain,noneofthesets,foreverypossibletruthassignmenttothe’s,isadmissible.Thismeansthatnoneofthesesetsofassumptionscancounterattacktheattackandderive.Therefore,istrue.

lowerbuttrivial,undertheadmissibilitysemantics,oronelevelhigher,underthepreferabilitysemantics,thanunderthestabilitysemantics.

NotethatsimilarresultstotheoneobtainedaboveforDLhavebeenrecentlyobtainedfordisjunctivelogicprogramming[11].

7GeneralFrameworks:AutoepistemicLogic

AELisneitherflat,simple,nornormal.ThismeansthatwecannotexpectanysimplificationswhenreasoninginAELframeworks.Asamatteroffact,theupperboundsforgeneralframeworks,whichapplyofcourse,arealsotightforAEL.ByProposition6,credulousreasoningunderthepreferabilitysemanticsco-incideswithcredulousreasoningundertheadmissibilitysemantics.FromTheo-rem8,sincethereasoningproblemintheunderlyingmonotoniclogicforAELisclassicalreasoninginpropositionallogic(coNP-complete),credulousreasoningundertheadmissibilityandpreferabilitysemanticsisin,whichcoincideswith.-hardness,andtherefore-completeness,canbeprovenbyareduc-tionfrom3-QBF.

Theorem19CredulousreasoninginAELundertheadmissibilityandpreferabil-itysemanticsis-complete.

Proof:ByProposition6,itsufficestoprovethetheoremfortheadmissibilitysemantics.MembershipfollowsfromTheorem8.Toprovehardness,weuseareductionfrom3-QBFtothecredulousreasoningproblemundertheadmissibilitysemantics.

Assumethefollowingquantifiedbooleanformula

withaformulain3CNFoverthepropositionalvariables,,.WeconstructanAELtheorysuchthatistrueiffsome

sentenceiscontainedinsomeadmissibleargumentfortheframeworkcorre-spondingto.

Thelanguageofcontainsatoms,,andaswellasatoms,intuitivelyholdingifatruthvalueforthevariables

hasbeenchosen,andanatomusedtopreventthatanytruthvalueforthe’scanbechosen.consistsofthesentences:

20

foreach,.

Obviously,canbeconstructedinlog-space.Nowweprovethattheframe-workcorrespondingtoadmitsanadmissibleextensioncontaining

iffistrue.Thismeansthatthegiven3-QBFcanbereducedtocredulousreason-ingundertheadmissibilitysemantics.

Assumethattheframeworkcorrespondingtoadmitsanadmissibleexten-sionderiving.Then,foreach,eitherorispartof,fortobederivedbyit.Further,mustbepartof,fortobeclosed,andthusadmissible.Finally,noneoftheassumptions,canbepartof,forotherwise,ifclosed,wouldattackitselfandthusbenon-admissible.Consideranyassumptionsetthatattacks.mustattackoneoftheas-sumptions,,or.However,ifattackedanyof,,thenwouldimmediatelycounter-attack.Therefore,fortobeanassumptionsetthatcanpossiblyrendernon-admissible,itmustmakethesamechoicesonthe’sas,andattack.Fortoattack,thenmustderive,byincluding,inadditiontotheassumptionsfromalreadychosenby,assumptionsfromtheset.Suchchoicescan-notbecounter-attackedbywithoutmakingitself-attacking.Therefore,sinceisadmissible,nosuchexists.Thismeansthat,forthegivenchoicesonthe’sin,nochoicesforthe’sexistthatmaketrue.Inotherwords,forthegivenchoiceofthein,andforallchoicesofthetruthvaluesforthe’s,thereexistsanassignmentoftruthvaluestothe’sthatmakestrue,whichimpliesthatisnecessarilytrue.

Conversely,assumethatthereisnoadmissibleextensionoftheframeworkcorrespondingtoderivingabove.Then,regardlessofthechoicesforthe’s,thereisalwaysanattackon,deriving,thatcannotbecounter-attackedwhilekeepingthecandidatesetofassumptionsnon-self-attacking.Then,bytheargumentspresentedabove,thegiven3-QBFformulacannotbetrue.

Theorem20ScepticalreasoninginAELundertheadmissibilitysemanticsiscomplete.

-

Proof:MembershipfollowsfromTheorem8.Toprovehardness,weuseare-ductionfrom3-QBFtotheco-scepticalreasoningproblemundertheadmissibilitysemantics.

WeusethereductionintheproofofthepreviousTheorem19,butextendthetheoryconstructedtheretothetheory.Anyadmissiblesetmustcontaintheassumptionsandinorderfortobeclosed.Furthermore,anyadmissibleextensionofmustcontainbecauseotherwiseitisattackedbywithouthavingacounter-attack.Fromthisfactandtheaboveobservationsitfollowsthathasanadmissibleextensioniffthegiven3-QBFformulaistrue.Giventhatifnoadmissibleextensionexistsallco-scepticalquerieswillbeanswerednegatively,theaboveisequivalenttothefactthatisnotascepticalconsequenceofiffistrue,i.e.,theconstructionisalog-spacereductionfrom3-QBFtoco-scepticalreasoningundertheadmissibilitysemantics.

consistsofthefollowingsentences:

(1)(2)(3)(4)(5)(6)(7)(8)

foreach

,,.Nowweclaimthatthereexistsapreferredextensionnotcontainingiffistrue.

First,onenotesthatanassumptionsetcontainingnon-conflictingassumptionsfromthesetisanadmissibleset.Letbeamaximalsuchset.Secondly,itisobviousthatcanbeexpanded(inanon-trivialway)onlybyaddingtheassumptionandassumptionsfromtheset.Letuscallthisexpandedset.Suchasetisonlyadmissibleifwemakechoicesforall’sbecauseotherwisecanbeattackedby(using)forwhichthereisnocounter-attackfrom.

Thirdly,thesetcannotbefurtherexpandedusingassumptionsfrombecausetheseassumptionsleadtoanimmediateself-attack.Fourthly,anassumptionsetcontainingassumptionsfromtogetherwithcanonlybeadmissibleifcannotbeattackedbyanyas-sumptionset.

Theonlywaytoconstructanattackagainst

in,whichisnotim-mediatelycounter-attackedby,wouldbetouseallassumptionsinandas-sumptionsfrom.Notethatsuchassumptionscannotbecounter-attackedby.Nowtheonlywaytoattackwouldbetomaketrue,andinordertodoso,onehastomaketrue.Assumingnowthatisadmissiblemeansthatforallpossiblechoicesforthe’s,isnotderivable,i.e.,thereisalwaysatruthassignmenttothe’sthatmakestrue.Thismeansthatcannotbeexpandedbyassumptionsfrom

togetherwith,ifunderthetruthassignmenttothe’scor-respondingtotheassumptionsin,foralltruthassignmentstothe’s,thereis

23

,

alwaysantruthassignmenttothe’sthatmakestrue.Inotherwords,ifthere

trueunder,istrue.existsapreferredassumptionsetthatdoesnotrender

Conversely,letusassumethatistrue.Letbeanassumptionsetcontainingassumptionsfromcorrespondingtoatruthassignmenttothe’sthatmakestrue.Thisassumptionsetcannotbeexpandedtobyassumptionsfromtogetherwith,becauseforanysuchexpansionthereexistsavalueassignmenttothe’swhichmakestrue,correspondingtoasetofchoicesfromwhichtogetherwithisanassumptionssetthatleadstogetherwithtothederivationofand,henceattacking.Forthisreason,thereexistsapreferredextensionnotcontainingbothandchoicesfrom,andhencethispreferred

.extensiondoesnotcontain

abstractframeworkfordefaultreasoningproposedin[1],foranumberofcon-creteinstancesoftheabstractframework,namelytheorist,circumscription,logicprogramming(LP),defaultlogic(DL)andautoepistemiclogic(AEL).Thesenewsemanticsarepresentedin[1]as“simpler”alternativestotheconventionalstabil-itysemanticsforallinstancesoftheframework(seeSection1foradiscussionofthisissue).

Table2summarisestheresultswehaveproven(fortheadmissibilityandpreferabilitysemantics)aswellasexistingresultsintheliterature(forthesta-bilitysemantics).Inthetable,“-c.”standsfor“-complete.”Wehaveproventheresultsbyappealingtopropertiesoftheframeworks,wheneverpossible.Inparticular,wehaveusedtheproperties(provenin[1])thatdefaultlogicandlogicprogrammingareflatframeworksandthattheoristandcircumscriptionarenormalframeworks.Inaddition,wehaveintroducedthenewpropertythatframeworksaresimple,andproventhattheoristandcircumscriptionsatisfysuchproperty.Autoepistemiclogicisageneralframeworkinthatitdoesnotsatisfyanyspecialpropertyamongsttheonesconsidered.

FrameworkAEL

flat

Theorist

Circumscription

Admissibility

scept.-c.

co-NP-c.P–c.

-c.-c.

scept.

-c.

-c.-c.

-c.-c.

Stability

scept.

-c.

-c.co-NP–c.-c.-c.

theframework,thusbecomingatrivialformofnon-monotonicreasoning.

ThereappearstobeaclashbetweentheseresultsandtheintuitionspelledoutinSection1,thatadmissibilityandpreferabilityargumentsareseeminglyeasiertocomputethanstableextensions.However,ourresultsarenotassurprisingastheymightatfirstappear.Sincetheadmissibilityandpreferabilitysemanticsdonotrestrictthenumberofextensions,onewouldexpectthatdefaultreasoningunderthesesemanticsisashardasunderthestabilitysemantics.Thehighercomplexityofthescepticalreasoningproblemunderthepreferabilitysemanticsisduetothefactthatinordertoverifythatanassumptionsetispreferred,oneneedstocheckthatnoneofitssupersetsisadmissible.

Ofcourse,ourresultsdonotcontradicttheexpectationthatinpracticecon-structingadmissibleargumentsisofteneasierthanconstructingstableextensions.

,withanysetofForexample,giventhepropositionallogicprogram

clausesnotdefiningtheatom,theemptysetforthequerythatcanbecon-structed“locally”,withoutaccessing.Moreover,ifislocallystrat-ifiedororder-consistent[1],isguaranteedtobeacredulousconsequenceoftheprogramunderthestabilitysemantics.Indeed,inallcaseswherethestabil-itysemanticscoincideswiththepreferabilitysemantics(e.g.forstratifiedandorder-consistentabstractframeworks)anysound(andcomplete)computationalmechanismfortheadmissibilitysemanticsissound(andcomplete)forthestabil-itysemantics.

The“locality”featureoftheadmissibilitysemanticsrendersitafeasiblealter-nativetothestabilitysemanticsinthefirst-ordercase,whenthepropositionalver-sionofthegivenabstractframeworkisinfinite.Forexample,giventhe(negation-free)logicprogram:,theemptysetofassumptionsisanadmis-sibleargumentforthequerythatcanbeconstructed“locally”,eventhoughthepropositionalversionofthecorrespondingabstractframeworkisinfinite.Thecomplexityresultsinthispapershowthatscepticalreasoningunderad-missibilityandpreferabilitysemanticsistrivialandhighlycomplex,respectively.However,thisdoesnotseemtomatterfortheenvisionedapplicationsofthisse-mantics,becausecredulousreasoningonlyisrequiredfortheseapplications[18].Forexample,inargumentationinpracticalreasoningingeneralandlegalreason-inginparticular,unilateralargumentsareputforwardsanddefendedagainstallcounterarguments,inacredulousmanner.Indeed,thesedomainsappeartobepar-ticularlywellsuitedforcredulousreasoningundertheadmissibilitysemantics.Ingeneral,theresultspresentedinthispaperindicatethatreasoningunderthenewsemanticsisharder.Onthepositiveside,theyindicatethatthenewsemantics

26

allowsustoencodemorecomplexreasoningpatternsthanwhenreasoningwiththestabilitysemantics.

Acknowledgments

ThefirstauthorhasbeenpartiallysupportedbytheDFGaspartofthegraduateschoolonHumanandMachineIntelligenceattheUniversityofFreiburgandthesecondauthorhasbeenpartiallysupportedbytheUniversityofCyprus.

References

[1]AndreiBondarenko,PhanMinhDung,RobertA.Kowalski,andFrancescaToni.Anabstract,argumentation-theoreticframeworkfordefaultreasoning.ArtificialIntelligence,93(1–2):63–101,1997.[2]MarcoCadoli,MaurizioLenzerini.TheComplexityofPropositionalClosedWorldReasoningandCircumscription.JournalofComputerandSystemSci-ences48(2):255–310,1994.[3]MarcoCadoliandMarcoSchaerf.Asurveyofcomplexityresultsfornon-monotoniclogics.TheJournalofLogicProgramming,17:127–160,1993.[4]YannisDimopoulos,BernhardNebelandFrancescaToni.PreferredArgu-mentsareHardertoComputethanStableExtensions,Proc.IJCAI’99,16thInternationalJointConferenceonArtificialIntelligence,pages36–41,T.Deaned.,MorganKaufmann,1999.[5]YannisDimopoulos,BernhardNebelandFrancescaToni.FindingAdmissibleandPreferredArgumentsCanBeVeryHard,Proc.KR’2000,7thInternationalConferenceonPrinciplesofKnowledgeRepresentationandReasoningpages53–61,T.Cohn,F.Giunchiglia,B.Selmaneds,MorganKaufmann,2000.[6]PhanMinhDung,RobertA.Kowalski,andFrancescaToni.SynthesisofProofProceduresforDefaultReasoning,Proc.LOPSTR’96,InternationalWorkshoponLogicProgramSynthesisandTransformation,pages313-324J.Gallaghered.,LNCS1207,SpringerVerlag,1996.

27

[7]PhanMinhDung,RobertA.Kowalski,andFrancescaToni.Argumentation-theoreticproofproceduresfordefaultreasoning.Technicalreport,ImperialCollege,London,UK,1998.[8]PhanMinhDung.Negationashypothesis:anabductivefoundationforlogicprogramming.InK.Furukawa,editor,Proceedingsofthe8thInternationalConferenceonLogicProgramming,pages3–17,Paris,France,1991.MITPress.[9]ThomasEiterandGeorgGottlob.Reasoningwithparsimoniousandmoder-atelygroundedexpansions.FundamentaInformaticae17(1,2):31–54,1992.[10]ThomasEiterandGeorgGottlob.PropositionalCircumscriptionandEx-tendedClosed-WorldReasoningare-Complete.TheoreticalComputerSci-ence114(2):231–245,1993.

[11]ThomasEiter,NicolaLeone,andDomenicoSacc`a.Expressivepowerandcomplexityofpartialmodelsfordisjunctivedeductivedatabases.TheoreticalComputerScience,206:181–218,1998.[12]KaveEshghiandRobertA.Kowalski.Abductioncomparedwithnegationasfailure.InG.LeviandM.Martelli,editors,Proceedingsofthe6thInternationalConferenceonLogicProgramming,pages234–254,Lisbon,Portugal,1989.MITPress.[13]MichaelR.GareyandDavidS.Johnson.ComputersandIntractability—AGuidetotheTheoryofNP-Completeness.Freeman,SanFrancisco,CA,1979.[14]MichaelGelfondandVladimirLifschitz.Thestablemodelsemanticsforlogicprogramming.InK.BowenandR.A.Kowalski,editors,Proceedingsofthe5thInternationalConferenceonLogicProgramming,pages1070–1080,Seattle,WA,1988.MITPress.[15]GeorgGottlob.Complexityresultsfornonmonotoniclogics.JournalforLogicandComputation,2(3):397–425,1992.[16]GeorgGottlob.Thecomplexityofdefaultreasoningunderthestationaryfixedpointsemantics.InformationandComputation,121:81–92,1995.

28

[17]AntonisC.Kakas,RobertA.KowalskiandFrancescaToni.Theroleofabductioninlogicprogramming.HandbookofLogicinArtificialIntelligenceandLogicProgramming,5:235–324,D.M.Gabbay,C.J.HoggerandJ.A.Robinsoneds.,OxfordUniversityPress,1998.[18]RobertA.KowalskiandFrancescaToni.Abstractargumentation.JournalofArtificialIntelligenceandLaw,4(3–4):275–296,1996.[19]VictorW.MarekandMiroslawTruszczynski.Nonmonotoniclogic:context-dependentreasoning.Springer-Verlag,Berlin,Heidelberg,NewYork,1993.[20]JohnMcCarthy.Circumscription—aformofnon-monotonicreasoning.Ar-tificialIntelligence,13(1–2):27–39,1980.[21]DrewMcDermott.NonmonotoniclogicII:Nonmonotonicmodaltheories.JournaloftheAssociationforComputingMachinery,29(1):33–57,1982.[22]RobertC.Moore.Semanticalconsiderationsonnonmonotoniclogic.Artifi-cialIntelligence,25:75–94,1985.[23]IlkkaNiemel¨a.Towardsautomaticautoepistemicreasoning.InLogicsinAI,volume478ofLectureNotesinArtificialIntelligence.Springer-Verlag,Berlin,Heidelberg,NewYork,1990.[24]ChristosH.Papadimitriou.ComputationalComplexity.Addison-Wesley,Reading,MA,1994.[25]DavidPoole.Alogicalframeworkfordefaultreasoning.ArtificialIntelli-gence,36:27–47,1988.[26]RaymondReiter.Alogicfordefaultreasoning.ArtificialIntelligence,13(1):81–132,April1980.[27]DomenicoSacc`aandCarloZaniolo.Stablemodelsandnon-determinisminlogicprogramswithnegation.InProceedingsofthe9thACMSIGACT-SIGMOD-SIGARTSymposiumonPrinciplesofDatabase-Systems(PODS-90),pages205–217,1990.[28]DomenicoSacc`a.Theexpressivepowerofstablemodelsforboundandun-boundDATALOGqueries.JournalofComputerandSystemSciences,54:441–464,1997.

29

[29]J.Stillman.Thecomplexityofpropositionaldefaultlogics.InProceed-ingsofthe10thNationalConferenceoftheAmericanAssociationforArtificialIntelligence(AAAI-92),pages794–799,SanJose,CA,July1992.MITPress.[30]L.StockmeyerandA.Meyer.WordProblemsRequiringExponentialTime:PreliminaryReport.InProceedingsofthe5thACMSymposiumontheTheoryofComputing,(STOC1973),pages1–9,1973.

30

因篇幅问题不能全部显示,请点此查看更多更全内容

Top