COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
CLAUDIOPISANI
Abstract.Weillustratetheformula(↓p)x=Γ!(x/p),whichgivesthereflection↓pofacategoryp:P→XoverXindiscretefibrations.Oneofitsproofsisbasedona“complementoperator”whichtakesadiscretefibrationAtothefunctor¬A,rightadjointtoΓ!(A×−):Cat/X→Setandvaluedindiscreteopfibrations.Someconsequencesandapplicationsarepresented.
1.Introduction
The“classical”formulas(see[Lawvere,1973]and[Par´e,1973])
(↓p)x=Γ!(x/p)
orbetter
↓p=Γ!(−/p)
;
↑p=Γ!(p/−)
(2)
whichdisplaythepresheavescorrespondingtothereflectionsofacategoryp:P→XoverabasecategoryXindiscretefibrationsandindiscreteopfibrationsascomponentsof“comma”categories,donotappearatafirstsightparticularlypregnantorself-explicatory.However,notingthatx/pistheproductx/X×pinCat/X(andsimilarlyp/x=X/x×p)andthatx/XandX/x(correspondingtotherepresentablepresheaves)arethereflections↑xand↓xoftheobjectx:1→X,weget
(↓p)x=Γ!(↑x×p)
;
(↑p)x=Γ!(↓x×p)
(3)
;
(↑p)x=Γ!(p/x)
(1)
Theseareexactlytheset-valuedversionoftheformulas
x∈↓p
⇐⇒
Γ!(↑x∩p)
;
x∈↑p
⇐⇒
Γ!(↓x∩p)
(4)
whichclearlygivethereflectionsofasubsetpofaposetinloweranduppersubsets.(HereΓ!isthetwo-valuedcorrespectiveofthecomponentsfunctor,andgivesfalseontheemptysetandtrueelsewhere).Remarkably,alsothemostnaturalproofof(4),
20
CLAUDIOPISANI
basedontheclassicalcomplementoperatorwhichtakeslowersetsintouppersets(andconversely)andontheconsequentlaw
Γ!(↓p∩q)
⇐⇒
Γ!(p∩↑q)
(5)
generalizesalmoststraightforwardlytotheset-valuedcontext.(See[Pisani,2007]foradetaileddiscussionoftheposetcase,whichprovidesusefulinsightandmotivations.)Recallthatthefundamentaladjunctions
Γ!⊣Γ∗⊣Γ∗:Cat→Set
betweenthecomponents,discreteandpointsfunctors,canbegeneralizedto
Γ!⊣Γ∗⊣Γ∗:Cat/X→Set
(7)(6)
whereforp:P→X,Γ!pisgivenbythecomponentsofthetotal(ordomain)categoryP,whileforS∈Set,Γ∗SisthefirstprojectionoftheproductofXandthediscretecategoryonS.Inthepresentcontext,the(partiallydefined)“complementoperator”isparametrizedbysets:
¬:Set×(Cat/X)op→Cat/XIttakesadiscretefibrationAintothe“exponential”functor¬A:=(Γ∗−)A:Set→Cat/Xwhichisvaluedindiscreteopfibrations(andviceversa)andallowstoprovethelaw
Γ!(↓p×q)⇐⇒Γ!(p×↑q)(8)fromwhichthereflectionformulaiseasilydrawn.(Arelateddefinitionof“negation”is
proposedin[Lawvere,1996]).
AfterpresentingsomebasicfactsaboutcategoriesoverabaseinSection2,wedevelopthisandotherproofsofthereflectionformulainSection3.InSection4wetreatcolimitsinXasgivenbythe(partiallydefined)reflectionofCat/Xinprincipal(orrepresentable)discretefibrations.Thus↓(−)isanintermediatestepofthisreflection,andwecaneasilyderiveimportantpropertiesof(co)limitsfollowing[Par´e,1973].InSection5weconsiderthosecategoriest:T→XoverXsuchthat
hom(t,A)∼=ten(t,A):=Γ!(t×A)
(9)
foranydiscretefibrationordiscreteopfibrationA.Againmotivatedbythetwo-valued
case,wecallthem“atoms”.AnyidempotentarrowinXisanatom,andthereflectionsofatomsare,aspresheavesonX,theretractsofrepresentablefunctors;sotheygeneratetheCauchycompletionofX,displayingitastheKaroubienvelopeofX.Finally,inSection6weshowhowthereflectionformulacanbeusedtoobtaininaverydirectwaythereflectionofgraphsin(idempotent,bijectiveorn-periodic)evolutivesets.
SomeofthesetopicshavebeenpresentedattheInternationalConferenceonCategoryTheory(CT06)heldatWhitePointinJune2006,andunderaslightlydifferentperspec-tive,alsointhepreprint[Pisani,2005].Thepreprint[Pisani,2007],towhichwewilloftenrefer,containsmoredetailsandhasamoredidacticalstyle.
Acknowledgements.Theauthorisgratefultotherefereeforhishelpfulremarks.
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
21
2.Categoriesoverabase
Wereviewsomefactsaboutcategoriesoverabasethatwillbeusedinthesequel.Thoughmostofthemarestandard,othersseemnottobewidelyknown.
2.1.Discretefibrationsandstrongdinaturality.LetXbeafixedcategory
op
andy:X→SetXbetheYonedaembedding.Letusdenotebyithefunctor
i:=y/−:SetX
op
→Cat/X(10)
whichtakesapresheafA:Xop→Setintothecategoryofelementsy/Awithitspro-jectionoverX.ThecategoriesoverXisomorphictosomeiAarethediscretefibrations.Thefunctoriisfullandfaithful:
op
SetX(A,B)∼=Cat/X(iA,iB)
(11)
Notethattherighthandsideisdiscreteevenwhenthe2-structureofCat/Xisacknowl-edged.Wedenoteby
op
(12)↓(−):Cat/X→SetXaleftadjointofi;thusi↓(−)givesthereflectionofCat/Xinthefullsubcategoryof
discretefibrations.Similarly,wedefinei:SetX→Cat/Xand↑(−)⊣i.2.2.Remark.Foranyobjectx:1→X,therearebijections
op
Cat/X(x,iA)∼=SetX(X(−,x),A)=Ax∼
op
naturalinA∈SetX.Soweget↓x∼=X/x,the=X(−,x).SincefurthermoreiX(−,x)∼
reflectioni↓xofanobjectindiscretefibrationsistheslicecategoryX/x.Similarly,givenanarrowλ:2→Xofthebasecategory,withdomainxandcodomainy,↓λ∼=X(−,y);andtheinclusionsofthedomainandthecodomainbecomeX(−,λ)andtheidentityrespectively.
Theconstructionofthecategoryofelementsadmitsthefollowinggeneralization.Let
op
Din∗×X→SetasobjectsandthestrongXthecategorythathasthefunctorsX
dinaturaltransformations(alsoknownas“Barrdinatural”,see[Par´e&Roman,1998]and[Ghani,Uustalu&Vene,2004])asarrows.GivenafunctorH∈Din∗X,wedefineacategoryiHoverXasfollows:
•theobjectsoverx∈XaretheelementsofH(x,x);
•givenλ:x→yinX,thereisatmostonearrowfroma∈H(x,x)tob∈H(y,y)overλ,andthisisthecaseiffH(x,λ)a=H(λ,y)b∈H(x,y).
Thenoneeasilyverifies(see[Pisani,2007])thatthisconstructionsistheobjectmapofafullandfaithfulfunctor
i:Din∗/X(13)X→Cat
22
op
CLAUDIOPISANI
thatextendsbothi:SetX→Cat/Xandi:SetX→Cat/X(whichcomeupwhenHisdummyinonevariable).Weareparticularlyinterestedinthefollowingcase:givenA:Xop→SetandD:X→Set,letH(x,y)=Ax×Dy,thatisHisthecomposite
Xop×X
A×D
Set
(14)
TheniHoverXistheproductiA×iDinCat/X.Furthermore,inthiscase
DinX(H,K)∼=Din∗(H,K)∼=Cat/X(iH,iK)
X
thatis,thedinaturaltransformationswithdomainHarealsostronglydinatural,forany
K.
2.3.Changeofbaseandcomponents.Letf:X→Ybeafunctor.Asinanycategorywithpullbacks,itgivesrisetoapairofadjointfunctors
f!⊣f∗:Cat/Y→Cat/X
(15)
wheref!isgivenbycompositionwithf,whilef∗isobtainedbypullingbackinCat.Thepairf!⊣f∗satisfiestheFrobeniuslaw,thatisthemorphism
f!π1∧(ε◦f!π2):f!(p×f∗q)→f!p×q
(16)
isanisomorphismforanyp∈Cat/Xandq∈Cat/Y,εbeingthecounitoftheadjunction.Inparticular,wegetthefibersoverobjectsorarrowsofXofacategoryoverX:
Px
P
p
Pλ
P
p
(17)
X
X
Thepullbackofadiscretefibrationisadiscretefibration;moreprecisely,thelefthanddiagrambelowcommutes(uptoisomorphisms),andsoalsotherighthandsquareofleftadjointscommutes:
Set
iXop
Set
i
Xop
∃f
(18)
f!
(Inparticular,thefiber(iA)xofthediscretefibrationiAisthediscretecategoryonthesetAx.)Wethenobtainthatinthediagrambelow
SetXLL
LLLLLLLSetf
LLiLL
LLLLop
(19)
SetY
op
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
23
↓(−)◦f!⊣i◦Setf,andsinceiisfullandfaithfulalso↓(−)◦f!◦i⊣Setf,thatistheleftKanextensionofA:Xop→Setalongfopcanbecomputedby:
(20)∃fA∼=↓(f!(iA))InthespecialcaseY=1,thediagrams(18)abovebecome
Set
iXop
Colim
Set
i
Xop
(21)
tot
Inparticular,wehavethefunctors
Γ!⊣Γ∗:Set→Cat/X
(22)
Givenp:P→XinCat/X,Γ!pisthesetofcomponentsofthetotalcategoryPwhilefor
asetS,Γ∗SistheprojectionX×S→XoftheproductofXandthediscretecategoryonS.Furthermore,thediscretefunctorΓ∗hasarightadjointΓ∗,givingthesetofpointsofp,thatisitssections.
Theformula(20)nowbecomes
(23)ColimA∼=Γ!(iA)=π0(tot(iA))∼whichexpressesthecolimitofapresheafbythecomponentsofitscategoryofelements.
(Similarly,LimA=Γ∗(iA).)Thiscanbegeneralizedasfollows.Letusdenoteby
Coend∗:Din∗X→Set
aleftadjointtothefunctor∆:Set→Din∗X,definedintheusualway.Then
Din∗XJ
i
J
JJJJJJ∆JJJJJJJJJ
(24)
commutes,andasaboveweget
Coend∗H∼=Γ!(iH)
(25)
WhileingeneralCoend∗HandtheusualCoendHaredifferent(see[Pisani,2007]),by
theremarkattheendofsection2.1,theycoincideforH(x,y)=Ax×Dy:
(26)A⊗D∼=Γ!(iA×iD)=Γ!(iH)∼ThusweareledtoconsiderΓ!(iA×iD)asageneralizedtensorproduct,andwepose
ten:=Γ!(−×−):Cat/X×Cat/X→Set
callingitthe“tensorfunctor”.
(27)
24
CLAUDIOPISANI
2.4.Exponentialsandcomplements.ThecategoryCatisnotlocallycartesianclosed,thatisexponentialsinCat/Xmaynotexist.Whentheydo,theobjectsofpqoverxarethefunctorsPx→Qx,whilethearrowsofpqoverλarethefunctorsPλ→Qλover2(seediagram17).
Discretefibrationsandopfibrationsareexponentiable.Thefollowingparticularcasewillbeneededinthesequel(see[Pisani,2007]):
2.5.Proposition.IfiAisadiscretefibrationandiDadiscreteopfibrationoverX,thentheexponential(iD)iAinCat/Xisadiscreteopfibration(anddually(iA)iDisadiscretefibration).
X×X
thatis,(iD)iAx=DxAxand
A×D
Set(28)
(iD)iAf=DfAf:DxAx→DyAy
h→Df◦h◦Af
2.6.Definition.Givenp:P→XinCat/X,arightadjointtoten(p,−)=Γ!(p×−):Cat/X→Setiscalled“thecomplementofp”andisdenotedby¬p:
ten(p,−)⊣¬p:Set→Cat/X
(29)
Itiseasytoseethatphasacomplementifftheexponential(Γ∗S)pexistsforanysetS.Inthiscasewehave
¬p∼(30)=(Γ∗−)pInparticular,sinceΓ∗SisbothadiscretefibrationandadiscreteopfibrationforanysetS,
Proposition2.5givesthefollowingcorrespectiveofthefactthatclassicalcomplementationonthesubsetsofaposettakeslowersetsintouppersets(andconversely):
2.7.Corollary.AnydiscretefibrationiAhasacomplementvaluedindiscreteop-fibrations(andconversely).Explicitly,asacovariantpresheaf(¬iA)S=(Γ∗S)iA=Set(A−,S),thatis:
(¬iA)Sx=SAx
(¬iA)Sf=SAf:SAx→SAy
h→h◦Af
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
25
2.8.Remark.Theadjunctionten(iA,−)⊣¬iA:Set→Cat/Xrestrictsto
A⊗−⊣Set(A−,):Set→SetX
aparticularcaseoftheclosedstructureofthebicategoryofdistributors.
Wenowprovean“adjunction-like”propertyofthetensorfunctoronCat/Xwhichwillallowustoderivedirectlythereflectionformula.
2.9.Proposition.LetXbeacategory,iAadiscretefibrationandiDadiscreteopfi-brationonX.Thenforanyp:P→XinCat/Xtherearenaturalbijections
ten(p,iA)∼=ten(i↑p,iA)
;
ten(p,iD)∼=ten(i↓p,iD)
Proof.Weprovethefirstone,theotherbeingsymmetrical.ForanysetS
ten(p,iA)→S
i↑p→(¬iA)S
Thefollowingpropositioncanbeinterpretedasthefactthatcomplementationin
Cat/Xisclassical,whenrestrictedtodiscretefibrationsanddiscreteopfibrations;inparticular,itispossibleto“recover”adiscretefibration(orpresheaf)fromitscomplement(see[Pisani,2007]):
2.10.Proposition.IfiAandiBarebothdiscretefibrations(orbothdiscreteopfibra-tions),thenthereisanaturalbijection
hom(iA,iB)∼=hom(¬iB,¬iA)
26
CLAUDIOPISANI
3.1.Proposition.Theleftadjoint↓(−)⊣iisgivenonap:P→Xby
↓p∼=ten(−/X,p)
orequivalently↓p∼=Γ!(−/p).
3.2.Proposition.Therightadjointi⊣(−)◦isgivenonap:P→Xby
p◦∼=hom(X/−,p)
WebeginwithaproofofProposition3.1,bymeansofthecomplementoperator,which
hasastrikingsimilaritywiththat(straightforward)ofProposition3.2.
In[Pisani,2007]itischeckeddirectlythattheaboveformulasactuallygivethedesiredadjoints.Fortheleftadjoint,thischeckisheresupersededbyreviewingotherproofsofProposition3.2,thatrestonstandardcompletenessproperties;namelyonKanextensionsofsetfunctorsandoncolimitsofpresheavesrespectively.
3.3.Thereflectionformulaviacomplementation.WebeginbynoticingthatforanydiscretefibrationiA
Ax∼=ten(x,iA)∼=hom(x,iA)
(32)
Indeed,ingeneralforanyp:P→X,ten(x,p)=Γ!(Px)andhom(x,p)=Γ∗(Px)are
thecomponentsandtheobjectsofthefibercategoryoverx;sinceiAhasdiscretefiberstheresultfollows.
3.4.Proposition.Givenacategoryp:P→XoverX,thepresheaf↓p:Xop→Setactsonobjectsasfollows
(↓p)x=ten(x/X,p)
Proof.
(↓p)x
ten(i↑x,i↓p)
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
27
Itisworthstressingthestrongsimilaritybetweentheabovederivationofthereflectionformulaandthefollowingderivationofthecoreflectionformula:
3.5.Proposition.Givenacategoryp:P→XoverX,thepresheafp◦:Xop→Setactsonobjectsasfollows
(p◦)x=hom(X/x,p)
Proof.
(p◦)x
hom(i↓x,ip◦)
Tocompletetheproofsofpropositions3.1and3.2,notethattheactionofthearrowsλinXonthefibersfollowsfromtheformofthereflection↓λ(seeRemark2.2).3.6.ThereflectionformulaviaKanextension.WebeginbynotingthattheusualcoendformulafortheleftKanextensionofapresheafA:Xop→Setalongafunctorf:X→Y
(33)(∃fA)y∼=A⊗Y(y,f−)mayberewrittenas
∃fA∼=ten(iA,−/f)
(34)
Indeed,by(26),A⊗Y(y,f−)∼=y/f.=ten(iA,i(Y(y,f−)))andi(Y(y,f−))∼
Bythesecondofdiagrams(18)
∃f↓p∼=↓(f!p)
foranyp:P→X.Inparticular
↓p∼=∃p∆1=∃p↓1P∼=↓(p!1P)∼
(36)(35)
where1PistheterminaldiscretefibrationidP:P→PoverP.Sobythe(34)abovewe
conclude
(37)↓p∼=Γ!(−/p)=Γ!(1P×−/p)∼=ten(i∆1,−/p)∼=∃p∆1∼asdesired.(Conversely,thereflectionformulacanbeusedtoderivethecoendformula(33)
or(34),asshownin[Pisani,2007].)
28
CLAUDIOPISANI
3.7.Thereflectionformulaviacolimitsofpresheaves.Webeginbyobservingthatforanyp:P→Xthereisabijection
Cone(p,x)∼=Cone(1,X(p−,x))=Cone(1,Setp↓x)
naturalinx,andthatbyYoneda
A∼=Sety↓A
(39)(38)
foranypresheafA:Xop→Set(ontherighthandside,Aisconsideredasanobjectof
op
SetX).Thenwehavethefollowingchainofbijections,naturalinA:
Cat/X(p,iA)
Cat/P(1P,p∗(iA))SetP(∆1,SetpA)SetP(∆1,Sety◦p↓A)
opop
Cone(y◦p,A)
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
29
4.Colimitsasreflections
Foranyfixedp:P→X,wehavethefollowingbijections,naturalinx:
Cat/X(p,X/x)
Cat/P(1P,p∗(X/x))
Cat/P(i∆1,iX(p−,x))
Cone(1,X(p−,x))
pbj
(Compositionispreservedautomatically.)
jjjjλb
jjjx
Sop:P→XhasacolimitiffthereisauniversalarrowfromptoX/−.Ifthisisthecase,theuniversalarrowisalimitingconep→X/Colimp.Lettingpvary,weinfacthavetwodifferentmodules“cone”
Cone:XP→X
;
Cone:Cat/X→X
bothrepresentableontheright,andsoalsotwodifferentoperativedefinitionsofthecolimitfunctor:eitherasthepartiallydefinedleftadjoint
Colim:XP→X
tothefunctor∆:X→XP,orasthepartiallydefinedleftadjoint
Colim:Cat/X→X
tothefunctorX/−:X→Cat/X.Dually,wehavetwolimitfunctors
Lim:XP→X
;
Lim:(Cat/X)op→X
respectivelyrightadjointto∆:X→XPandto−/X:X→(Cat/X)op.
30
CLAUDIOPISANI
4.2.Remark.Thetwocolimitfunctors(whichagreeoneachsinglep:P→Xasanobjectoftwodifferentcategories)canbemergedinasingle
Colim:Cat/X∗→X
(see[MacLane,1971],[Par´e,1973]and[Kan,1958])whereCat/X∗istheGrothen-dieckcategoryassociatedtothe2-representablefunctorCat(−,X):Cat→Cat(whichincludesbothCat/XandalltheXPassubcategories).Indeed,wehavethefurthermodule“cone”(whichincludestheotherones)
Cone(p,x):=Cat/X∗(p,δx)
whereδ:X→Cat/X∗isthefullandfaithfulfunctorwhichsendsanobjectx∈XtothecorrespondingcategoryoverX.Theisomorphisms
Cone(p,−)∼=Cone(i↓p,−)=Cat/X(i↓p,X/−)∼=Cat/X(p,X/−)∼
showthatthecolimitsofafunctoraredeterminedbyitsreflection:Colimpexistsiff
Colim(i↓p)exists,andifthisisthecasetheyareisomorphic.Thus,ifpandqinCat/Xhaveisomorphicreflectionsthen
(43)Colimp∼=Colimqeitherexistingiftheotheronedoes.Morethanthat,thesameremainstrueaftercom-posingwithanyfunctorf:X→Y:
4.3.Proposition.Twocategoriesp:P→Xandq:Q→XoverXhaveisomorphic
reflectionsi↓p∼=i↓qifandonlyifforanyf:X→Y
Colim(f◦p)∼=Colim(f◦q)eithersideexistingiftheotheronedoes.
Proof.Onedirectionisadirectconsequenceofequation(40).Theotherfollowsfrom
theisomorphismsCone(f◦p,−)∼=Cat/X(i↓p,f/−)=Cat/X(p,f∗(Y/−))∼=Cat/Y(f!p,Y/−)∼
∼=Cone(f◦(i↓p),−)=Cat/Y(f!(i↓p),Y/−)∼Alternatively,onecoulduse(35)and(43).
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
31
Soafunctorhasanabsolutecolimitiffthe“intermediatestep”i↓(−)ofthereflectionofacategoryoverXinprincipaldiscretefibrations,isinfactalreadythefinalstep.4.5.Remark.SinceColim⊣X/−∼=i◦yandiisfullandfaithful
SetXJJ
JJJJJJyJJiJJ
JJJJJ
op
(44)
X
alsoColim◦i⊣y,sothattheleftadjointtotheYonedaembeddinghasthewell-known
form:ittakesapresheafAtothecolimitColimiAofitscategoryofelementsoverX.Bycomposingtheadjunctionsf!⊣f∗andColim⊣Y/−
f!⊥f∗
Cat/Xweget
Cat/YY/−
Y
(45)
Colim(f◦−)⊣f/−:Y→Cat/X
Andsincef/−∼=i◦Setf◦y
SetXJJ
JJJJJJSetf◦yJJiJJ
JJJJJ
asaboveweget
op
(46)
(47)
Y
(48)
Colim(f◦i−)⊣Setf◦y
wheretheleftadjointtakesapresheafAtotheweightedcolimitA∗f∼=Colim(f◦iA),
displayingitasacolimit.
IntheparticularcaseY=Set,theadjunction(46)isthe(dualof)ten(A,−)⊣¬Aofsection2.4,whiletheadjunction(48)becomesthe(dualof)A⊗−⊣Set(A−,).
5.Atomsandtheirreflections
Wesaythatacategoryt:T→XoverXisa“leftatom”iftherearebijections
ten(t,iA)∼=hom(t,iA)
32
op
CLAUDIOPISANI
naturalinA∈SetX.Dually,tisa“rightatom”if
ten(t,iD)∼=hom(t,iD)
naturalinD∈SetX.Wesaythattisanatomifitisbothaleftandarightatom.We
shallseethatthedistinctionbetweenleftandrightatomsisillusory.Observethatanyobjectx:1→XofthebasecategoryXisanatom(see(32)).5.1.Proposition.Foranyfunctorf:X→Ytherearebijections
tenX(p,f∗q)∼=tenY(f!p,q)
naturalinp∈Cat/Xandq∈Cat/Y.
Proof.UsingtheFrobeniuslaw(16),wehave:
tenX(p,f∗q)=Γ!(p×f∗q)∼=Γ!(f!p×q)=tenY(f!p,q)=Γ!(f!(p×f∗q))∼
(49)
Wenowshowthatidempotentarrowsofthebasecategoryareatoms.Thisisessen-tiallythefactthatinthegraphcorrespondingtoanidempotentendomapping,thefixed
points(orloops)correspondtothecomponents.Letebethemonoidwhichrepresentstheidempotentarrowsofcategories,thatistheonewhoseuniquenon-identityarrowisidempotent.
5.3.Proposition.Anyidempotente:e→XinXisanatom.ForanydiscretefibrationordiscreteopfibrationDonX,ten(e,iD)∼=hom(e,iD)isthesetfixDeoftheelementsofDxfixedbyDe:Dx→Dx.
Proof.ForanydiscretefibrationordiscreteopfibrationiD,
ten(e,iD)∼=Γ!(e×iD)∼=Γ!(e∗(iD))∼=Γ!i(SeteD)∼=Colim(SeteD)hom(e,iD)∼=hom(1e,e∗(iD))∼=Γ∗(e∗(iD))∼=Γ∗i(SeteD)∼=Lim(SeteD)Butforanyfunctore:e→C,thelimitandthecolimitofe,whentheyexist,are
canonicallyisomorphic(see[Borceux,1994]).IfC=Setthesearegivenbythefixedpointsoftheidempotentmapping.
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
33
Notethatinthiscontextitisimportanttodistinguishbetweenidempotentarrowsasdefinedabove,andarrowse:2→Xwhichhappentobeidempotentendomorphisms;anarrowλ:2→Xisanatomiffitisanisomorphism.5.4.Proposition.Foranyt:T→X,tisarightatomiff
↓t⊗−∼=Nat(↑t,−):SetX→Set
Dually,tisaleftatomiff
op−⊗↑t∼=Nat(↓t,−):SetX→Set
Inparticular,foranyidempotentatome:e→X,
↓e⊗D∼=fixDe=Nat(↑e,D)∼
;
A⊗↑e∼=fixAe=Nat(↓e,A)∼
Proof.RecallingProposition2.9,onehasthefollowingbijections,naturalinD∈SetX:
Nat(↑t,D)∼=hom(t,iD)=hom(i↑t,iD)∼↓t⊗D∼=ten(i↓t,iD)∼=ten(t,iD)
ByYoneda,anyidempotentinSetX
op
onarepresentableX(−,x0)hastheform
X(−,e):X(−,x0)→X(−,x0)
forauniqueidempotente:x0→x0inX.
5.6.Corollary.LetA:Xop→SetbeapresheafonX.ThenAisaretractinSetX
oftherepresentablefunctorX(−,x0),associatedtotheidempotentX(−,e):X(−,x0)→X(−,x0),ifandonlyifA∼=↓e.Proof.TheretractAisthelimitofX(−,e):e→SetX,andthusisgivenpointwisebyAx∼=fixX(x,e).TheresultthenfollowsbyCorollary5.5.
op
op
34
CLAUDIOPISANI
5.7.Proposition.LetA:Xop→SetandD:X→Setbesuchthat
op
−⊗D∼=Nat(A,−):SetX→Set
ThenAisaretractinSetXofarepresentablefunctor.
Proof.Letu∈A⊗D∼=Γ!(iA×iD)beauniversalelementof−⊗D.Thenuisthecomponentofapaira,dover,say,x0∈X:
u=[a,d],
a∈Ax0,d∈Dx0
op
op
Letι:A→X(−,x0)betheuniquemorphisminSetX
suchthat(ι⊗D)u=[idx0,d]:
[idx0,d]=(ι⊗D)u∼=Γ!(ι×iD)[a,d]=[ιa,d]
andletρ:X(−,x0)→AbetheuniquemorphisminSetX
op
suchthatρidx0=a.Then
(ρ◦ι)⊗D∼=Γ!((ρ◦ι)×iD):[a,d]→[a,d]
sothatρ◦ι=idA,asrequired.
5.9.Remark.In[Kelly&Schmitt,2005]itisshown,inanenrichedcontext,theequiv-alencebetween1and2andthefactthatAandDareadjointmodules.
ByProposition5.4andtheequivalencebetween1and2inProposition5.8,itfollows5.10.Corollary.Anyrightatomisalsoaleftatom,andviceversa.
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
35
ByProposition5.8,foranyatomt:T→Xthereexistsanidempotente:x→xinXsuchthat↑t∼=↑eand↓t∼=↓e.Thisidempotentisnotunique,sinceforexampleife
ri
splitsasx→y→x,then↓e∼=↓y.5.11.Corollary.ForanatomT→Xthefollowingareequivalent:1.thasalimit.2.thasacolimit.3.thasanabsolutelimit.4.thasanabsolutecolimit.
Proof.Indeed,alltheaboveareequivalentforanye:e→X(see[Borceux,1994]),andsobypropositions4.3and4.4theyareequivalentalsofort.
t
6.Graphsandevolutivesets
Asaparticularcaseofthereflectionformula,considerX=N,themonoidofnaturalnumbers,asthebasecategory.Thenwehavetheadjunction
↑(−)⊣i:SetN→Cat/N
withtheusualformula:foranyp:P→N,
(↑p)⋆∼=ten(N/⋆,p)
(51)(50)
36
CLAUDIOPISANI
where⋆istheonlyobjectofN,sothatN/⋆is(oppositeof)theposetofnaturalnumbers,withitsprojectiononN.Theactionisgivenbytherightshift:
k:[n,a]→[n+k,a]
(a∈P)
AmongthecategoriesoverNtherearetheuniquefactorizationlifting(UFL)functors(see[Bunge&Niefield,2000]),whichincludediscretefibrationsanddiscreteopfibration,andwhichcanbeidentifiedwith(irreflexive)graphsasfollows.ForanyG∈GphwehavetheUFLfunctorF!:FG→FL∼=N,whereListheterminalgraph(theloop),andF:Gph→Catisthefreecategoryfunctor;slightlyimproperly,wedenotebyFalsotheresultingfunctorF:Gph→Cat/N.Conversely,foranyUFLfunctorp:P→NwegetagraphGbythepullbackbelow(inGph):
G
|P|
|p|
(52)
|N|
thatis,thearrowsofGarethoseof|P|whichareover1∈N.ItiseasytoseethatwesoobtainanequivalencebetweenGphandthefullsubcategoryofCat/NofUFLfunctors.Furthermore,sinceUFLfunctorsareclosedunderpullbacks,thefunctorF:Gph→Cat/Npreservesproducts:F(G×H)∼=FG×FH.Andsinceagraphandthefreecategoryonithavethesamecomponents,F:Gph→Cat/Nalsopreservescomponents:Γ!G∼=Γ!FG.Thusintheparticularcasethatp:P→NisanUFLfunctorFG→N,thereflectionformula(51)takesthefollowingform:
(↑FG)⋆∼=ten(N/⋆,FG)∼=ten(FA,FG)∼=Γ!(FA×FG)
∼=Γ!(A×G)=Γ!(F(A×G))∼
whereA∈Gphistheinfiniteanti-chain:
••
(53)
•
•
•
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
37
6.2.Remark.Similarly,onegetsthereflectionformulaforgraphsoverabasegraphGingraph(op)fibrationsoverG(see[Boldi&Vigna,2002]);orequivalently,theleftadjointtotheinclusionSetFG→Gph/G(see[Pisani,2007]and[Pisani,2005]).6.3.Examples.1.LetGbethegraph
•
••,wherein
themissingcodomainsinGhavebeenadded.Ontheotherhand,therearenochainsinG,sothatthecoreflectionG◦isvoid:thenodeswithnocodomainshavebeendeleted.
whichisnotanevolutivesetbecause2.LetGbethegraph•
therearetwoarrowsoutofonenode.Applyingthereflectionformula,wemultiplyGbytheanti-chainA,gettingthetwo-componentsgraph
•/•
•//////////
////////
///////
////•/////•@@/@@/@@/@@/
@@//@@//@@//@@//
@@/@@/@@/@@/
@/@/@/@/
•/
••••
SothereflectionofGhastwonodes.Furthermore,theactiononitisgivenagain
byrighttranslation,sothatthesecondcomponentisafixedpointandweget
G−=•
whereinthemultiplecodomainsinGhavebeenidentified.Ontheotherhand,therearefourchainsinGsothatG◦hasfournodes:
G◦=
•
•
thatis,thenodeswithmultiplecodomainshavebeensplit.
38
3.IfG=•
CLAUDIOPISANI
•−−
andG3=,thenG−•1,G2andG3
◦
arealltheloop(identificationprevailsinG−1).Asforcoreflections,G1istheloop,
◦
G◦2isthesumoftheloopandtheanti-chainwithaloopaddedatitsend,andG3isthesetofsequencesinatwo-elementset,undertheactions→s(1+).
Now,letethe“idempotentarrow”categoryofSection5,andf:N→ethefunctorwhichtakes1∈Ntothenon-identityarrowofe.Thecomposite
Set
hasaleftadjoint
e
Setf
Cat/N
l:=∃f◦↑(−)∼=↑(−)◦f!:Cat/N→Sete(lp)⋆∼=tene(e/⋆,f!p)∼=tenN(f∗(e/⋆),p)
(54)
(seediagrams18).Then(recallingProposition5.1)
(onlynon-where⋆istheonlyobjectofe,sothate/⋆isthecategory••
identityarrowsdrawn)withitsprojectionone,andf∗(e/⋆)∼=FEwhereEisthegraph••.Thus,asabove,thenodesofthereflectionG−ofthegraphGinidempotentevolutivesetsarethecomponentsoftheproductE×GinGph.Theactionisgivenagainbythe“shift”inE.(Ofcourse,onehasalsothecorrespondingcoreflectionformula:Gph(E,G)givesthenodesofthecoreflectionG◦.)
Similarly,toobtainthenodesofthereflectionsofagraphGinbijectiveorn-periodicevolutivesets,wehavetotakethecomponentsoftheproductsZ×GandZn×Grespec-tively,withthegraphsZandZnbelow
Z=
•
••
•
(narrows)(56)
COMPONENTS,COMPLEMENTSANDTHEREFLECTIONFORMULA
39
6.4.Examples.
1.ItiseasytoseethatifGisconnected(thatis,Γ!G=1)thenE×Ghasn+1components,wherenisthenumberofnodesthatarenotcodomainsofanyarrow.Sothereflectioninidempotentevolutivesetsactsoneachcomponentbymaintainingsuchnodes,andcollapsingtherestofittothefixedpoint.2.ThereflectionG−ofagraphGinn-periodicevolutivesetsisobtainedbytakingthecomponentsofZn×G.Since,asitiseasilychecked,
Zk×Zn=gcd(k,n)·Zlcm(k,n)
wededucethatZ−khasgcd(k,n)nodesandso,beingconnected,
Z−k=Zgcd(k,n)
Sinceanybijectiveevolutivesetisasumofcycles,G=reflectionisgivenby
G−=
∞k=1
∞
k=1
Sk·Zk,itsn-periodic
Sk·Zk
−
=
∞k=1
Sk·Z−k=
∞k=1
Sk·Zgcd(k,n)
6.5.Remark.ConsideringGphasapresheafcategory(ratherthanasubcategoryof
Cat/N),alltheabovereflectionsbecomeinstancesofKanextensions.Butthepresentapproachgivesamoredirectandintuitivewayofcomputingthem.
References
F.Borceux(1994),HandbookofCategoricalAlgebra1(BasicCategoryTheory),Encyclo-pediaofMathematicsanditsapplications,vol.50,CambridgeUniversityPress.M.BungeandS.Niefeld(2000),ExponentiabilityandSingleUniverses,J.PureAppl.
Algebra148,217-250.N.Ghani,T.UustaluandV.Vene(2004),Build,AugmentandDestroy.Universally,Pro-ceedingoftheAsianSymposiumonProgrammingLanguages,LNCS3302,Springer,Berlin,327-347.D.M.Kan(1958),AdjointFunctors,Trans.Am.Math.Soc.87,294-329.
G.M.KellyandV.Schmitt(2005),NotesonEnrichedCategorieswithColimitsofsome
Class,TheoryandAppl.Cat.17,399-423.J.LambekandP.J.Scott(1986),IntroductiontoHigherOrderCategoricalLogic,Cam-bridgestudiesinadvancedmathematics,vol.7,CambridgeUniversityPress.
40
CLAUDIOPISANI
M.LaPalmeReyes,G.E.Reyes,H.Zolfaghari(2004),GenericFiguresandtheirGlueings,
PolimetricaS.a.s.,Monza.F.W.Lawvere(1970),EqualityinHyperdoctrinesandtheComprehensionSchemeasan
AdjointFunctor,ProceedingsoftheAMSSymposiumonPureMathematics,XVII,1-14.F.W.Lawvere(1973),MetricSpaces,GeneralizedLogicandClosedCategories,Rend.
Sem.Mat.Fis.Milano43,135-166.RepublishedinReprintsinTheoryandAppl.Cat.No.1(2002)1-37.F.W.Lawvere(1989),QualitativeDistinctionsbetweensomeToposesofGeneralized
Graphs,ProceedingsoftheAMSSymposiumonCategoriesinComputerScienceandLogic,ContemporaryMathematics,vol.92,261-299.F.W.Lawvere(1996),AdjointsinandamongBicategories,Proceedingsofthe1994Con-ferenceinMemoryofRobertoMagari,Logic&Algebra,LecturesNotesinPureandAppliedAlgebra,180:181-189,Ed.UrsiniAglian`o,MarcelDekker,Inc.Basel,NewYork.S.MacLane(1971),CategoriesfortheWorkingMathematician,GraduateTextsinMath-ematics,vol.5,Springer,Berlin.R.Par´e(1973),ConnectedComponentsandColimits,J.PureAppl.Algebra3,21-42.R.Par´eandL.Rom´an(1998),DinaturalNumbers,J.PureAppl.Algebra128(1),33-92.C.Pisani(2005),BipolarSpaces,preprint,math.CT/0512194.
C.Pisani(2007),Components,ComplementsandReflectionFormulas,preprint,math.-CT/0701457.P.Boldi,S.Vigna(2002),FibrationsofGraphs,DiscreteMath.243,21-66.viaGioberti86,10128Torino,Italy.
Email:pisclau@yahoo.it
Thisarticlemaybeaccessedathttp://www.tac.mta.ca/tac/orbyanonymousftpatftp://ftp.tac.mta.ca/pub/tac/html/volumes/19/2/19-02.{dvi,ps,pdf}
THEORYANDAPPLICATIONSOFCATEGORIES(ISSN1201-561X)willdisseminatearticlesthatsignificantlyadvancethestudyofcategoricalalgebraormethods,orthatmakesignificantnewcontribu-tionstomathematicalscienceusingcategoricalmethods.Thescopeofthejournalincludes:allareasofpurecategorytheory,includinghigherdimensionalcategories;applicationsofcategorytheorytoalgebra,geometryandtopologyandotherareasofmathematics;applicationsofcategorytheorytocomputerscience,physicsandothermathematicalsciences;contributionstoscientificknowledgethatmakeuseofcategoricalmethods.
ArticlesappearinginthejournalhavebeencarefullyandcriticallyrefereedundertheresponsibilityofmembersoftheEditorialBoard.Onlypapersjudgedtobebothsignificantandexcellentareacceptedforpublication.
Fulltextofthejournalisfreelyavailablein.dvi,PostscriptandPDFfromthejournal’sserverathttp://www.tac.mta.ca/tac/andbyftp.Itisarchivedelectronicallyandinprintedpaperformat.
Subscriptioninformation.Individualsubscribersreceiveabstractsofarticlesbye-mailasthey
arepublished.Tosubscribe,sende-mailtotac@mta.caincludingafullnameandpostaladdress.Forin-stitutionalsubscription,sendenquiriestotheManagingEditor,RobertRosebrugh,rrosebrugh@mta.ca.
Informationforauthors.
AThetypesettinglanguageofthejournalisTEX,andLTEX2e
stronglyencouraged.Articlesshouldbesubmittedbye-maildirectlytoaTransmittingEditor.Pleaseobtaindetailedinformationonsubmissionformatandstylefilesathttp://www.tac.mta.ca/tac/.
Managingeditor.RobertRosebrugh,MountAllisonUniversity:rrosebrugh@mta.caTEXnicaleditor.MichaelBarr,McGillUniversity:mbarr@barrs.orgTransmittingeditors.
RichardBlute,Universit´ed’Ottawa:rblute@uottawa.caLawrenceBreen,Universit´edeParis13:breen@math.univ-paris13.frRonaldBrown,UniversityofNorthWales:r.brown@bangor.ac.ukAurelioCarboni,Universit`adellInsubria:aurelio.carboni@uninsubria.itValeriadePaiva,XeroxPaloAltoResearchCenter:paiva@parc.xerox.com
EzraGetzler,NorthwesternUniversity:getzler(at)math(dot)northwestern(dot)eduMartinHyland,UniversityofCambridge:M.Hyland@dpmms.cam.ac.ukP.T.Johnstone,UniversityofCambridge:ptj@dpmms.cam.ac.ukG.MaxKelly,UniversityofSydney:maxk@maths.usyd.edu.auAndersKock,UniversityofAarhus:kock@imf.au.dk
StephenLack,UniversityofWesternSydney:s.lack@uws.edu.au
F.WilliamLawvere,StateUniversityofNewYorkatBuffalo:wlawvere@acsu.buffalo.eduJean-LouisLoday,Universit´edeStrasbourg:loday@math.u-strasbg.frIekeMoerdijk,UniversityofUtrecht:moerdijk@math.uu.nlSusanNiefield,UnionCollege:niefiels@union.eduRobertPar´e,DalhousieUniversity:pare@mathstat.dal.caJiriRosicky,MasarykUniversity:rosicky@math.muni.cz
BrookeShipley,UniversityofIllinoisatChicago:bshipley@math.uic.eduJamesStasheff,UniversityofNorthCarolina:jds@math.unc.eduRossStreet,MacquarieUniversity:street@math.mq.edu.auWalterTholen,YorkUniversity:tholen@mathstat.yorku.caMylesTierney,RutgersUniversity:tierney@math.rutgers.edu
RobertF.C.Walters,UniversityofInsubria:robert.walters@uninsubria.itR.J.Wood,DalhousieUniversity:rjwood@mathstat.dal.ca
因篇幅问题不能全部显示,请点此查看更多更全内容