VHDL八位乘法器
一. 设计思路
纯组合逻辑构成的乘法器虽然工作速度比较快,但过于占用硬件资源,难以实现宽位乘法器,基于PLD器件外接ROM九九表的乘法器则无法构成单片系统,也不实用。这里介绍由八位加法器构成的以时序逻辑方式设计的八位乘法器,具有一定的实用价值,而且由FPGA构成实验系统后,可以很容易的用ASIC大型集成芯片来完成,性价比高,可操作性强。其乘法原理是:乘法通过逐项移位相加原理来实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。
二.方案设计与论证
此设计是由八位加法器构成的以时序逻辑方式设计的八位乘法器,它的核心器件是八加法器,所以关键是设计好八位加法器。
方案:由两个四位加法器组合八位加法器,其中四位加法器是四位二进制并行加法器,它的原理简单,资源利用率和进位速度方面都比较好。综合各方面的考虑,决定采用方案二。
三.工作原理
ARICTL是乘法运算控制电路,它的START信号上的上跳沿与高电平有2个功能,即16位寄存器清零和被乘数A[7...0]]向移位寄存器SREG8B加载;它的低电平则作为乘法使
能信号,乘法时钟信号从ARICTL的CLK输入。当被乘数被加载于8位右移寄存器SREG8B后,随着每一时钟节拍,最低位在前,由低位至高位逐位移出。当为1时,一位乘法器ANDARITH打开,8位乘数B[7..0]在同一节拍进入8位加法器,与上一次锁存在16位锁存器REG16B中的高8位进行相加,其和在下一时钟节拍的上升沿被锁进此锁存器。而当被乘数的移出位为0时,一位乘法器全零输出。如此往复,直至8个时钟脉冲后,由ARICTL的控制,乘法运算过程自动中止,ARIEND输出高电平,乘法结束。此时REG16B的输出即为最后的乘积。
四.工作原理框图
arictlclkclkoutariendinst3sreg8bclkloadB[7..0]INPUTVCCreg16bclkclrd[8..0]adder8bandarithqbabindin[7..0]dout[7..0]cina[7..0]b[7..0]inst1s[7..0]coutinst5q[15..0]OUTPUTdout[15..0]startrstalldin[7..0]inst6inst2A[7..0]INPUTVCCOUTPUTdout5[15..0] 五.程序清单
1.library ieee; ----四位二进制并行加法器
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity add4b is
port( cin:in std_logic;
a,b:in std_logic_vector(3 downto 0);
s:out std_logic_vector(3 downto 0);
cout:out std_logic);
end;
architecture one of add4b is
signal sint,aa,bb:std_logic_vector(4 downto 0);
begin
aa<='0' & a;
bb<='0' & b;
sint<=aa+bb+cin;
s<=sint(3 downto 0);
cout<=sint(4);
end;
2.library ieee; --由两个四位二进制并行加法器级联而成的八位二进制加法器;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity adder8b is
port( cin:in std_logic;
a,b:in std_logic_vector(7 downto 0);
s:out std_logic_vector(7 downto 0);
cout:out std_logic);
end;
architecture one of adder8b is
component add4b --对要调用的元件add4b的端口进行说明
port( cin:in std_logic;
a,b:in std_logic_vector(3 downto 0);
s:out std_logic_vector(3 downto 0);
cout:out std_logic);
end component;
signal carryout: std_logic;
begin
u1:add4b port map(cin,a(3 downto 0),b(3 downto 0),s(3 downto 0),carryout);
u2:add4b port map(carryout,a(7 downto 4),b(7 downto 4),s(7 downto 4),cout);
end;
3.library ieee; --一位乘法器;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity andarith is
port( abin:in std_logic;
din:in std_logic_vector(7 downto 0);
dout:out std_logic_vector(7 downto 0));
end;
architecture one of andarith is
begin
process(abin,din)
begin
for i in 0 to 7 loop
dout(i)<=din(i) and abin;
end loop;
end process;
end;
4.library ieee; --乘法运算控制器
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity arictl is
port( clk,start:in std_logic;
clkout,rstall,ariend:out std_logic);
end;
architecture one of arictl is
signal cnt4b:std_logic_vector(3 downto 0);
begin
rstall<=start;
process(clk,start)
begin
if start='1' then cnt4b<=\"0000\";
elsif clk'event and clk='1' then
if cnt4b<8 then --小于8则计数,等于8则表明乘法运算已经结束
cnt4b<=cnt4b+1;
end if;
end if;
end process;
process(clk,cnt4b,start)
begin
if start='0' then
if cnt4b<8 then
clkout<=clk; ariend<='0';
else clkout<='0'; ariend<='1';
end if;
else clkout<=clk; ariend<='0';
end if;
end process;
end;
5.library ieee; --16位锁存器
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity reg16b is
port( clk,clr:in std_logic;
d:in std_logic_vector(8 downto 0);
q:out std_logic_vector(15 downto 0));
end;
architecture one of reg16b is
signal r16s:std_logic_vector(15 downto 0);
begin
process(clk,clr)
begin
if clr='1' then r16s<=\"0000000000000000\";
elsif clk'event and clk='1' then
r16s(6 downto 0)<=r16s(7 downto 1);
r16s(15 downto 7)<=d;
end if;
end process;
q<=r16s;
end;
6.library ieee; --8位右移寄存器
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity sreg8b is
port( clk,load:in std_logic;
din:in std_logic_vector(7 downto 0);
qb:out std_logic);
end;
architecture one of sreg8b is
signal reg8:std_logic_vector(7 downto 0);
begin
process(clk,load)
begin
if clk'event and clk='1' then
if load='1' then reg8<=din;
else reg8(6 downto 0)<=reg8(7 downto 1);
end if;
end if;
end process;
qb<=reg8(0);
end;
7.library ieee;--8位乘法器顶层设计
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity mult8x8 is
port( clk:in std_logic;
start:in std_logic;
a,b:in std_logic_vector(7 downto 0);
dout:out std_logic_vector(15 downto 0);
ariend:out std_logic);
end;
architecture struc of mult8x8 is
component adder8b is
port( cin:in std_logic;
a,b:in std_logic_vector(7 downto 0);
s:out std_logic_vector(7 downto 0);
cout:out std_logic);
end component;
component andarith is
port( abin:in std_logic;
din:in std_logic_vector(7 downto 0);
dout:out std_logic_vector(7 downto 0));
end component;
component arictl is
port( clk,start:in std_logic;
clkout,rstall,ariend:out std_logic);
end component;
component reg16b is
port( clk,clr:in std_logic;
d:in std_logic_vector(8 downto 0);
q:out std_logic_vector(15 downto 0));
end component;
component sreg8b is
port( clk,load:in std_logic;
din:in std_logic_vector(7 downto 0);
qb:out std_logic);
end component;
signal gndint :std_logic;
signal intclk :std_logic;
signal rstall :std_logic;
signal qb :std_logic;
signal andsd :std_logic_vector(7 downto 0);
signal dtbin :std_logic_vector(8 downto 0);
signal dtbout :std_logic_vector(15 downto 0);
begin
dout<=dtbout; gndint<='0';
u1:arictl port map( clk,start,intclk,rstall,ariend);
u2:sreg8b port map(intclk,rstall,b,qb);
u3:andarith port map(qb,a,andsd);
u4:adder8b port map(gndint,dtbout(15 downto 0),dtbin(8));
u5:reg16b port map(intclk,rstall,dtbin,dtbout);
end;
六.仿真结果图
8),andsd,dtbin(7 downto
以下是8位乘法器顶层设计的仿真波形图,其它各模块的仿真波形图省略。
因篇幅问题不能全部显示,请点此查看更多更全内容