XiaomingSun†RunyaoDuan‡MingshengYing§
arXiv:quant-ph/0311133v2 18 Jan 2005StateKeyLaboratoryofIntelligentTechnologyandSystems,
DepartmentofComputerScienceandTechnology,TsinghuaUniv.,Beijing,100084,China.
Abstract
Withoutadditionalresources,itisoftenimpossibletotransformoneentangledquantumstateintoanotherwithlocalquantumoperationsandclassicalcommunica-tion.JonathanandPlenio[Phys.Rev.Lett.83,3566(1999)]presentedaninterestingexampleshowingthatthepresenceofanotherstate,calledacatalyst,enablessuchatransformationwithoutchangingthecatalyst.Theyalsopointedoutthatingeneralitisveryhardtofindananalyticalconditionunderwhichacatalystexists.Inthispaperwestudytheexistenceofcatalystsfortwoincomparablequantumstates.Forthesimplestcaseof2×2catalystsfortransformationsfromone4×4statetoanother,anecessaryandsufficientconditionforexistenceisfound.Forthegeneralcase,wegiveanefficientpolynomialtimealgorithmtodecidewhetherak×kcatalystexistsfortwon×nincomparablestates,wherekistreatedasaconstant.
IndexTerms—Quantuminformation,entanglementstates,entanglementtrans-formation,entanglementcatalysts.
1Introduction
Entanglementisafundamentalquantummechanicalresourcethatcanbesharedamongspatiallyseparatedparties.Thepossibilityofhavingentanglementisadistinguishingfea-tureofquantummechanicsthatdoesnotexistinclassicalmechanics.Itplaysacentralroleinsomestrikingapplicationsofquantumcomputationandquantuminformationsuchasquantumteleportation[1],quantumsuperdensecoding[2]andquantumcryptography[3].Asaresult,entanglementhasbeenrecognizedasausefulphysicalresource[4].However,manyfundamentalproblemsconcerningquantumentanglementarestillunsolved.Animportantsuchproblemconcernstheexistenceofentanglementtransformation.SupposethatAliceandBobeachhaveonepartofabi-partitestate.Thequestiontheniswhat
xm97@mails.tsinghua.edu.cn
Email:dry02@mails.tsinghua.edu.cn§
Email:yingmsh@mail.tsinghua.edu.cn
‡
1
otherstatescantheytransformtheentangledstateinto?Sinceanentangledstateisseparatedspatially,itisnaturaltorequirethatAliceandBobcanonlymakeuseoflocaloperationsandclassicalcommunication(LOCC).Significantprogressinthestudyofen-tanglementwasmadebyBennett,Bernstein,PopescuandSchumacher[5]in1996.Theyproposedanentanglementconcentrationprotocolwhichsolvedtheentanglementtrans-formationproblemintheasymptoticcase.In1999,Nielsen[6]madeanotherimportantn√advance.Supposethereisabi-partitestate|ψ1=i=1
βi|iA|iBwith
OSCsβ1≥β2≥···≥βn≥0.Itwasprovedthat|ψ1→|ψ2ispossibleunderLOCCifandonlyifλψ1≺λψ2,whereλψ1andλψ2arethevectorsoforderedSchmidtcoefficients,i.e.λψ1=(α1,...,αn),λψ2=(β1,...,βn),≺denotesthemajorizationrelation[7,8],i.e.for1≤l≤n,
ll
βi,αi≤
i=1
i=1
withequalitywhenl=n.ThisfundamentalcontributionbyNielsenprovidesuswithan
extremelyusefulmathematicaltoolforstudyingentanglementtransformation.AsimplebutsignificantfactimpliedbyNielsen’stheoremisthatthereexistincomparablestates|ψ1and|ψ2withbothtransformations|ψ1→|ψ2and|ψ2→|ψ1impossible.ShortlyafterNielsen’swork,aquitesurprisingphenomenonofentanglement,namely,entanglementcatalysis,wasdiscoveredbyJonathanandPlenio[9].Theygaveanexampleshowingthatonemayuseanotherentangledstate|c,knownasacatalyst,tomakeanimpossibletransformation|ψ→|φpossible.Furthermore,thetransformationisinfactoneof|ψ⊗|c→|φ⊗|c,sothatthecatalyst|cisnotmodifiedintheprocess.
Entanglementcatalysisisanotherusefulprotocolthatquantummechanicsprovides.Thereforetoexploitthefullpowerofquantuminformationprocessing,wefirsthavetosolvethefollowingbasicproblem:givenapairofincomparablestates|ψ1and|ψ2with|ψ1→|ψ2and|ψ2→|ψ1,determinewhetherthereexistsacatalyst|csuchthat|ψ1⊗|c→|ψ2⊗|c.AccordingtoNielsen’stheorem,solvingtheproblemrequiresdeterminingwhetherthereisastate|cforwhichthemajorizationrelationλψ1⊗c≺λψ2⊗cholds.AspointedoutbyJonathanandPlenio[9],itisverydifficulttofindananalyticalandbothnecessaryandsufficientconditionfortheexistenceofacatalyst.Thedifficultyismainlyduetolackofsuitablemathematicaltoolstodealwithmajorizationoftensorproductstates,andespeciallytheflexibleorderingoftheOSCsoftensorproducts.In[9],JonathanandPlenioonlygavesomesimplenecessaryconditionsfortheexistenceofcatalysts,butnosufficientconditionwasfound.Thosenecessaryconditionsenabledthemtoshowthatentanglementcatalysiscanhappeninthetransformationbetweentwon×nstateswithn≥4.Oneofthemainaimsofthepresentpaperistogiveanecessaryandsufficientconditionforentanglementcatalysisinthesimplestcaseofentanglementtransformationbetween4×4stateswitha2×2catalyst.Forgeneralcase,thefactthatananalyticalconditionunderwhichincomparablestatesarecatalyzableisnoteasytofindleadsusnaturallytoanalternativeapproach;thatis,toseeksomeefficientalgorithmtodecidecatalyzabilityofentanglementtransformation.Indeed,an
2
algorithmtodecidetheexistenceofcatalystswasalreadypresentedbyBandyopadhyayandRoychowdhury[10].Unfortunately,fortwon×nincomparablestates,todeterminewhetherthereexistsak×kcatalystforthem,theiralgorithmrunsinexponentialtimewithcomplexityO([(nk)!]2),andsoitisintractableinpractice.TheintractabilityofBandyopadhyayandRoychowdhury’salgorithmstimulatedustofindamoreefficientalgorithmforthesamepurpose,andthisisexactlythesecondaimofthepresentpaper.
Thispaperisorganizedasfollows.Inthesecondsectionwedealwithentanglementcatalysisinthesimplestcaseofn=4andk=2.Anecessaryandsufficientconditionunderwhicha2×2catalystexistsforanentanglementtransformationbetween4×4statesispresented.ThisconditionisanalyticallyexpressedintermsoftheOSCsofthestatesinvolvedinthetransformation,andthusitiseasilycheckable.Also,someinterestingexamplesaregiventoillustratetheuseofthiscondition.Thethirdsectionconsidersthegeneralcase.Weproposeapolynomialtimealgorithmtodecidetheexistenceofcatalysts.Suppose|ψ1and|ψ2aretwogivenn×nincomparablestates,andkisanyfixednaturalnumber.Withtheaidofouralgorithm,onecanquicklyfindallk×kcatalystsforthetransformation|ψ1→|ψ2usingonlyO(n2k+3.5)time.ComparingtothetimecomplexityO([(nk)!]2)ofthealgorithmgivenin[10],forconstantk,ouralgorithmimprovesthecomplexityfromsuperexponentialtopolynomial.Wemakeconclusionsinsection4,andsomeopenproblemarealsodiscussed.
simplifythepresentation,intherestofthepaper,weidentifythestate|ψ=nTo√
i=1
Theseinequalitiesaremerelynecessaryconditionsfortheexistenceofcatalyst|φ,anditiseasytoseethattheyarenotsufficient.Inthefollowingtheoremwegiveaconditionwhichisbothnecessaryandsufficient.
Theorem2.1Thereexistsacatalysts|φfortwostates(|ψ1,|ψ2)with|ψ1→|ψ2,ifandonlyif
β1β4α1+α2−β1
,1−≤minmax
β3−α3α2−β2
α4−β4
β1−α1
β2+β3
,1−
α1+α2
,
α3+α4
|φ=(c,1−c)isacatalystfor(|ψ1,|ψ2).
Proof:Assume|ψ1→|ψ2but|ψ1⊗|φ→|ψ2⊗|φunderLOCC.FromEq.(8)in[9]
weknowEq.(1)holds.SoEq.(2)andEq.(3)holdtoo.
AroutinecalculationshowsthattheSchmidtcoefficientsof|ψ1|φand|ψ2|φare
A={α1c,α2c,α3c,α4c;α1(1−c),α2(1−c),α3(1−c),α4(1−c)}
and
B={β1c,β2c,β3c,β4c;β1(1−c),β2(1−c),β3(1−c),β4(1−c)},
respectively.SorttheelementsinAandBindecreasingorderanddenotetheresultedsequencesbya(1)≥a(2)≥···≥a(8)andb(1)≥b(2)≥···≥b(8).Itisclearthata(1)=α1c,a(8)=α4(1−c),b(1)=β1c,andb(8)=β4(1−c).Since|ψ1⊗|φ→|ψ2⊗|φ,Nielsen’stheoremtellsusthat
ll
b(i)(∀1≤l≤8)a(i)≤
i=1
i=1
Since{βi}isordered,andc≥0.5,thus
β1c≥β2c≥β3c≥β4c,β1(1−c)≥β2(1−c)≥β3(1−c)≥β4(1−c),βic≥βi(1−c)(5)Nowwearegoingtodemonstratethat
β1c≥β1(1−c)>β2c≥β3c>β2(1−c)≥β3(1−c)>β4c≥β4(1−c).
(6)
andconsequentlyfixtheorderingofB.Thekeyideais:thesumofthebiggestlnumbers
inasetisgreaterthanorequalthesumofanylnumbersinthisset.
First,bydefinitionof{a(i)}wehavea(1)+a(2)≥α1c+α2c.SoNielsen’stheoremleadstob(1)+b(2)≥a(1)+a(2)≥α1c+α2c.Frominequality(1),α1+α2>β1+β2,sob(1)+b(2)>β1c+β2c,i.e.b(2)>β2c.Combiningthiswithinequality(5),weseethattheonlycaseisb(2)=β1(1−c),b(3)=β2candβ1(1−c)>β2c.
4
Similarly,wehave
a(1)+a(2)+a(3)+a(4)≥α1c+α2c+α1(1−c)+α2(1−c)=α1+α2.
Soitholdsthat
b(1)+b(2)+b(3)+b(4)≥a(1)+a(2)+a(3)+a(4)≥α1+α2>β1+β2.
Thisimpliesb(4)>β2(1−c).Thenitmustbethatb(4)=β3c,andβ3c>β2(1−c).
Nowwhatremainsistodeterminetheorderbetweenb(5)andb(7).Weconsiderb(7)first.Nielsen’stheoremyieldsb(7)+b(8)≤a(7)+a(8).Bydefinition,weknowthata(7)+a(8)≤α3(1−c)+α4(1−c).Therefore,
b(7)+b(8)≤α3(1−c)+α4(1−c)=(α3+α4)(1−c)<(β3+β4)(1−c),
thelastinequalityisdueto(2).Sinceb(8)=β4(1−c),itfollowsthatb(7)<β3(1−c).Furthermore,weobtainb(7)=β4c,b(6)=β3(1−c),andβ3(1−c)>β4c.
Finally,onlyβ2(1−c)leaves,sob(5)=β2(1−c).Combiningtheabovearguments,wefinishtheproofofinequality(6).
Clearly,inequality(6)impliesthat
β2
β1+β2
,
β3
ProofofTheorem2.1(continued):Nowtheabovelemmaguaranteesaquiteeasywaytol
dealwithi=1a(i):enumeratingsimplyallthepossiblecases.Forexample,a(1)+a(2)=α1c+α1(1−c)orα1c+α2c,i.e.a(1)+a(2)=max{α1c+α1(1−c),α1c+α2c}.The8(i)(i)arethesame.Whatwestillneedtodonowistotreatmentsfor3i=1a,...,i=1al
(i)≤(i)(1≤l≤8).Weputthissolvesystematicallytheinequalitiesoflai=1i=1b
dauntingbutroutinepartintheAppendix.Theabovetheorempresentsanecessaryandsufficientconditionwhena2×2catalystexistsforatransformationfromone4×4statetoanother.Moreover,itisalsoworthnotingthatthetheoremisindeedconstructive.Thesecondpartofitgivesall2×2catalysts(ifany)forsuchatransformation.Toillustratetheutilityoftheabovetheorem,letusseesomesimpleexamples.
Example2.1ThisexampleisexactlytheoriginalexamplethatJonathanandPlenio[9]usedtodemonstrateentanglementcatalysis.Let|ψ1=(0.4,0.4,0.1,0.1)and|ψ2=(0.5,0.25,0.25,0).Then
α1+α2−β1
=max{0.6,1−2/3}=0.6,max
β3−α3
β4β1
,1−min
α2−β2
β2+β3
α1+α2
,β1−α1
,1−
α4−β4
=min{25/38,10/11,1−0}=25/38,
α3+α4
and0.52<0.65<25/38,Theorem2.1guaranteesthat|φisreallyacatalyst;anditallowsustofindmuchmorecatalysts|φ=(c,1−c)withc∈[0.52,25/38].
3Anefficientalgorithmfordecidingexistenceofcatalysts
Inthelastsection,wewasabletogiveanecessaryandsufficientconditionunderwhicha2×2catalystexistsforantransformationbetween4×4states.ThekeyideaenablingustoobtainsuchaconditionisthattheorderamongtheSchmidtcoefficientsofthetensorproductofthecatalystandthetargetstateinthetransformationisuniquelydeterminedbyNielsen’sTheorem.However,thesameideadoesnotworkwhenwedealwithhigher
6
dimensionalstates,anditseemsveryhardtofindananalyticalconditionforexistenceofcatalystinthecaseofhigherdimension.Ontheotherhand,existenceofcatalystsisadominantprobleminexploitingthepowerofentanglementcatalysisinquantuminformationprocessing.Suchadilemmaforcesustoexplorealternativelythepossibilityoffindinganefficientalgorithmfordecidingexistenceofcatalysts.Themainpurposeistogiveapolynomialtimealgorithmtodecidewhetherthereisak×kcatalystfortwoincomparablen×nstates|ψ1,|ψ2,wherek≥2isafixednaturalnumber.
Toexplaintheintuitionbehindouralgorithmmoreclearly,wefirstcopewiththecaseofk=2.Assume|ψ1=(α1,...,αn),and|ψ2=(β1,...,βn)aretwon×nstates,andassumethatthepotentialcatalystforthemisa2×2stateφ=(x,1−x).TheSchmidtcoefficientsof|ψ1|φand|ψ2|φarethengivenas
Ax={α1x,α2x,...,αnx;α1(1−x),...,αn(1−x)}
and
Bx={β1x,β2x,...,βnx;β1(1−x),...,βn(1−x)},
respectively.Sortthemindecreasingorderanddenotetheresultingsequencesbya(1)(x)≥a(2)(x)≥···≥a(2n)(x)andb(1)(x)≥b(2)(x)≥···≥b(2n)(x).ByNielsen’stheoremweknowthatanecessaryandsufficientconditionfor|ψ1|φ→|ψ2|φis
li=1
a(i)(x)≤
li=1
b(i)(x)(l=1,...,2n).
Nowthedifficultyarisesfromthefactthatwedonotknowtheexactorderofelements
inAandB.Letusnowconsiderthisprobleminadifferentway.Ifwefixxtosomeconstantx0,wecancalculatetheelementsinA,Bandsortthem.Thenifwemovesxslightlyfromx0tox0+ǫ,theorderoftheelementsinA(orB)doesnotchange,exceptthecasethatxgoesthroughapointx∗withαi(1−x∗)=αjx∗(orβi(1−x∗)=βjx∗),i.e.x∗=αi
βi+βj)forsomei 7 Algorithm11.ρi,j← αi βi+βj, 1≤i 2 γ(2)≤···≤γ(n−n)3.γ(0)←0.5,γ(n5. c← 2−n+1) ←1 4.Fori=0ton2−ndo γ(i)+γ(i+1) n2k2where|Γ|=2k22=O(n).Inthek−dimensionalspaceR,theseO(n)hyperplanes canatmostdividethewholespaceintoO(O(n2)k)=O(n2k)differentparts.Notethenumberofpartsgeneratedbythesehyperplanesisapolynomialofn.Nowweenumerateallthesepossibleparts.Ineachpart,fordifferentx,theelementsinAx(orBx)hasthesameorder.Thenwecansolvetheinequalities li=1 a(i)(x)≤ li=1 b(i)(x)(1≤l≤nk) andchecktheorderconstrainsbylinearprogramming.Followingthewell-knownresult thatlinearprogrammingissolvableinO(n3.5)time,ouralgorithmrunsinO(n2k+3.5)time,itisapolynomialtimeofnwheneverkisagivenconstant. Indeed,Theorem3.1isconstructivetoo,anditsproofgivesanalgorithmwhichisablenotonlytodecidewhetheracatalystofagivendimensionexistsbutalsotofindallsuchcatalystswhentheydoexist.Thealgorithmbeforethistheoremisjustamoreexplicitpresentationoftheproofforthecaseofk=2. 4Conclusionanddiscussion Inthispaper,weinvestigatetheproblemconcerningexistenceofcatalystsforentanglementtransformations.Itissolvedforthesimplestcaseinananalyticalway.Wegiveanecessaryandsufficientconditionfortheexistenceofa2×2catalystforapairoftwoincomparable4×4states.Forthegeneralcase(k×kcatalystsforn×nstates),althoughwefailtogiveananalyticalcondition,anefficientpolynomialtimealgorithmisfoundwhenkistreatedasaconstant.However,ifkisavariable,rangingoverallpositiveintegers,theproblemofdeterminingtheexistenceofcatalystsstillremainsopen.WebelieveitisNP-hard,sincethesetAx={α1x1,...,αnx1;α1x2,...,αnx2;...,αnxk}intheproofofTheorem3.1potentiallyhasexponentialkindofdifferentorders. Acknowledgements:Theauthorsareverygratefultotheanonymousrefereesfortheirinvaluablecommentsandsuggestionsthathelpedtoimprovethepresentationinthispaper. References [1]C.H.Bennett,G.Brassard,C.Crepeau,R.Josza,A.Peres,andW.K.Wooters, “TeleportinganunknownquantumstateviadualclassicalandEinstein-Podolsky-Rosenchannels”,Phys.Rev.Lett.,vol.70,pp.1895–1899,Mar.1993.[2]C.H.BennettandS.J.Wiesner,“Communicationviaone-andtwo-particleoperators onEinstein-Podolsky-Rosenstates”,Phys.Rev.Lett.,vol.69,pp.2881–2884,Nov.1992. 9 [3]C.H.BennettandG.Brassard,“Quantumcryptography:Publickeydistribution andcointossing,”InProceedingsofIEEEInternationalConferenceonComputers,Systems,andSignalProcessing,pp.175–179,IEEE,NewYork,1984.[4]M.A.NielsenandI.L.Chuang,QuantumComputationandQuantumInformation, CambridgeUniversityPress,Cambridge,2000.[5]C.H.Bennett,H.J.Bernstein,S.Popescu,andB.Schumacher,“Concentratingpar-tialentanglementbylocaloperations,”Phys.Rev.A,vol.53,pp.2046–2052,Apr.1996.[6]M.A.Nielsen,“ConditionsforaClassofEntanglementTransformations,”Phys.Rev. Lett.,vol.83,pp.436–439,Jul.1999.[7]A.W.MarshallandI.Olkin,Inequalities:TheoryofMajorizationandItsApplica-tions,AcademicPress,NewYork,1979.[8]P.AlbertiandA.Uhlmann,StochasticityandPartialOrder:DoublyStochasticMaps andUnitaryMixing,Dordrecht,Boston,1982.[9]D.JonathanandM.B.Plenio,“Entanglement-AssistedLocalManipulationofPure QuantumStates”,Phys.Rev.Lett.,vol.83,pp.3566–3569,Oct.1999.[10]S.BandyopadhyayandV.Roychowdhury,“Efficiententanglement-assistedtransfor-mationforbipartitepurestates”,Phys.Rev.A,vol.65(4),Art.No.042306,Apr.2002. 5Appendix:ProofofTheorem2.1 ProofofTheorem2.1(remainingpart):Weneedtosolvethesystemofinequalitiesll(i)(1≤l≤8).Thisiscarriedoutbythefollowingitems:(i)≤ i=1bi=1a (1)First,wehave: a(1)≤b(1)⇐⇒α1c≤β1c⇐⇒α1≤β1. (9) (2)Theinequalitya(1)+a(2)≤b(1)+b(2)mayberewrittenasmax{α1c+α1(1−c),α1c+α2c}≤β1c+β1(1−c)⇐⇒ c ≤ (10) β1 α1+α2+α3−β2 , β1−α1 (4)Itholdsthat a(1)+a(2)+a(3)+a(4)c+α≤b(1)+b(2)+b(3)+b(4)max{αc), ⇐⇒ 11(1−c)+α2c+α2(1−c),α1c+α2c+α3c+α1(1−α1c+α2c+α3c+α4c}≤β1c+β1(1−c)+β2c+β3c ⇐⇒ α1+α2−β1 β11−β2−β3 , −α1β3−α3 ≤c≤1− β4 α3+α4, α4≥β4 (7)Wehave 7a (i) b(i)i=1 ≤ 7i=1 ⇐⇒a(8)≥b(8)⇐⇒α4≥β4 CombiningEq.(7,9-16)weobtain c≤ β1 ββ3+β4;1α1+α2+α3,β1−α1,β−β21−β2−β3 1−α1α2+α3+α4−β3 ,1− β4 β2+β3 ,1− α4−β4 1 ifα2+α3−β2−β3≤0,thistermisuseless. 11 (15) (16) itfollowsthat β1 α1+α2 β3 β3+β4 α1+α2 α1+α2 < < , β4 >1−β1 = β1 β1+β4 β1β4 α2+α3+α4−β3α2+α3−β2−β3 >1− ≥ β1−α1 β2+β3 ,1− α4−β4 α1+α2 , β1−α1 α3+α4 . Therefore,Eq.(4)isanecessaryconditionfortheexistenceofcatalyst. Ontheotherhand,weclaimthatEq.(1)andEq.(4)arethesufficientconditions.Indeed,ifwechooseacsatisfiesEq.(2.1),thencsatisfiesEq.(17)and(18).Fromk(i)Eq.(9-16)weknowthati=1a(i)≤ki=1b,i.e.|ψ1|φ→|ψ2|φunderLOCC.Thiscompletestheproof. 12 因篇幅问题不能全部显示,请点此查看更多更全内容