您的当前位置:首页正文

The Equivalence of Price and Quantity Competition with Incentive Scheme Commitment

来源:一二三四网
TheEquivalenceofPriceandQuantityCompetitionwithIncentiveScheme

Commitment

NolanH.Miller¤

AmitPazgaly

September7,1998

Abstract

Weconsideratwostagedi¤erentiatedproductsduopolymodel(withlineardemandandconstantmarginalcost).Inthe…rststagepro…tmaxi-mizingownerschooseincentiveschemesinordertoinducetheirmanagerstoexhibitacertaintypeofbehavior.Inthesecondstagethemanagerscompeteeitherinpricesorinquantities.IncontrasttoSinghandVives(1984),weshowthatiftheownershavesu¢cientpowertomanipulatetheincentivesoftheirmanagers,theequilibriumoutcomeisthesameregard-lessofwhetherthe…rmscompeteinpricesorinquantities.Basingthemanager’sobjectivefunctiononaconvexcombinationofownpro…tandthedi¤erencebetweenownpro…tandtherival…rm’spro…tissu¢cientfortheequivalenceresulttohold.

¤

ManagerialEconomicsandDecisionSciences,J.L.KelloggGraduateSchoolofManagement,

NorthwesternUniversity.y

DepartmentofMarketing,JohnM.OlinSchoolofBusiness,WashingtonUniversity.TheauthorsthankBillSandholm,DanielSpulber,andJeroenSwinkelsforhelpfulcomments.Allerrorsareourown.Sendcommentsto:pazgal@wuolin.wustl.edu

1.Introduction

SinghandVives(1984)provethesomewhatsurprisingresultthatinadi¤eren-tiatedproductsduopolywithconstantmarginalcosts,allelsebeingequal,theequilibriumunderpricecompetitiondi¤ersfromtheequilibriumunderquantitycompetition.Inparticular,theyshowthatinCournotcompetition1,quantitiesarelowerandpricesarehigherthaninBertrandcompetition,regardlessofwhetherthegoodsaresubstitutesorcomplements.Thisdi¤erencestemsfromthefactthattheperceivedelasticityofdemandwhena…rmtakesit’srival’spriceascon-stantislargerthantheperceivedelasticityofdemandwhena…rmtakesit’srival’squantityasconstant.Inotherwords,theoptimalreactionofthemanagerdi¤ersdependingonwhetherhebelieveshisopponenttobeplayingapricestrategy,inwhichcaseheimagineshisopponent’spricetobe…xed,oraquantitystrategy,inwhichcaseheimagineshisopponent’squantitytobe…xed.

Thedi¤erencebetweenCournotandBertrandequilibriaforthesamedemandsystemconstitutesamajorpuzzleforeconomistsseekingtounderstandthestrate-gicinteractionsof…rms.Thepolarcaseis,ofcourse,productsthatareperfectsubstitutes.Inthiscasewe…ndtheso-calledBertrandParadox,thatquantitycompetitionyieldspositivegrossmargins,whilepricecompetitionleadstopricesatthemarginalcostlevel.Fordi¤erentiatedproducts,pricecompetitionisgener-ally“moreaggressive”thanquantitycompetition,yieldinghigherquantitiesandlowerprices(SinghandVives1984).

TheproblemofunderstandingtheequilibriumbehaviorinaduopolymarketisapparentlyevenmorecomplicatedasdemonstratedbytheworkofFershtmanandJudd(1987),Sklivas(1987)andVickers(1985),whoshowinavarietyofmod-elsthattheownerofa…rmmaywanttodistortthepreferencesofitsmanagers(thepeopleresponsibleformakingthepriceorquantitydecision)awayfrompure

1

Throughoutthispaperweusetheterm“Cournotcompetition”whenthe…rmscompeteby

settingquantitiesand“Bertrandcompetition”whenthe…rmscompetebysettingprices.

2

pro…tmaximizationinordertocommittoacertaincompetitiveposture.Fer-shtmanandJudd(1987)andSklivas(1987)(hereafterFJS)considertwostageduopolymodelswhereinthe…rststagepro…tmaximizing…rmschoosecompen-sationschemesformanagersthatarealinearcombinationofpro…tsandsales.Inthesecondstage,themanagers,knowingbothcompensationschemes,competeinaduopoly.SklivasshowsthatinCournotcompetitionownerswillchoosetohavemanagersputlessthanfullweightontheircosts,whileinpricecompetitionwithdi¤erentiated,substitutegoods,…rmswillputmorethanunitaryweightontheircostsinevaluatingtheirmanagers.Thisisequivalenttoputtingpositiveweightonbothpro…tsandsalesinthe…rstcase,andputtingpositiveweightonpro…tsbutnegativeweightonsalesinthesecond.TheresultsofFershtmanandJuddaresimilarincharacter.

Fumas(1991)andMillerandPazgal(1997)considertheroleofrelativeper-formanceevaluationusingthenaturalvariationontheFJS-stylemodelwheremanagersarecompensatedbasedonalinearcombinationofthe…rm’sownpro…tandthepro…tofitsrival.Theystudyatwostagegamewhereinthe…rststagetheownersdecideontheweighttobeputonthepro…tsoftherival…rmandinthesecondstagethemanagersofthe…rmscompeteinaduopolygame.TheequilibriumofthisgameisshowntohavelowerpricesandhigherquantitiesinthecaseofCournotcompetitionandhigherpricesandlowerquantitiesinthecaseofBertrandcompetitionascomparedtotheequilibriumingameswithoutexantecommitmenttorelativeperformance.Hence,theequilibriaunderpriceandquantitycompetitionareshiftedclosertogetheroncetheroleofincentiveschemecommitmentisrecognized.

Inthispaperweconsiderageneralclassoftwo-stagegamesinwhichinthe…rststageownerschooseavectorofincentiveparametersfortheirmanagersandinthesecondstagethemanagerscompete(eitherinpricesorinquantities)inadi¤erentiatedproductsduopolyenvironmentwithlineardemandandconstantmarginalcost.Weshowthatiftheownershavesu¢cientpowertomanipulate

3

theincentivesoftheirmanagers,theequilibriaunderpriceandquantitycompeti-tionareequivalent.Speci…cally,foranypricecompetition(respectivelyquantitycompetition)equilibriumthereexistsaquantitycompetitionequilibrium(pricecompetitionequilibrium)thatinducesthesameequilibriumpricesandquantities,althoughtheequilibriumincentiveparameterswillalmostcertainlydi¤er.Section2describesthemodelandprovestheequivalenceresult.Section3showshowtheequivalenceresultholdsintherelativeperformancemodelofMillerandPazgal(1997)butdoesnotholdinamodelbasedonFershtmanandJudd(1987).Section4discussesissuesregardingtheingeneralizationoftheresulttononlineardemandandincentivesystems.Section5concludes.

2.TheEquivalenceofPriceandQuantityCompetition

WhiletheFJS,Fumas,andMillerandPazgalmodelsdi¤erinthespeci…cmech-anismbywhichthepro…t-maximizingownersofthe…rmscommittheirmanagerstoacertaincompetitivepostures,thetwostagegamestheyconsidershareabasicstructure.Inthesecondstagethemanagers,theirincentivessetbytheownersinthe…rststage,competeinaduopolygame.Themanager’soptimizationproblemthereforede…neshis2reactionfunctionsuchthatforanystrategysjplayedbyhisrival,themangerchoosestheoptimalstrategy,si:Graphically,ifweplotsiontheverticalaxisandsjonthehorizontalaxis,thereactionfunctionissuchthattheisoquantsofmanageri’sincentivefunctionhaveverticaltangentsthroughall(sj;si)onthereactionfunction.WewillrefertothisconditionastheManager’sOptimalityCondition.

Inthe…rststageofthecompetitiontheownerschooseanincentiveschemeforthemanagers.Thatis,giventhesecondstageequilibriuminducedbytheowners’choiceofincentiveparameters,theownerschoosetheincentiveparametersinorder

2

Throughoutthepaper,ownerswillbereferredtoas“she”andmanagersas“he”.

4

tomaximizetheirpro…t.Graphically,thisisequivalentto,wheneverpossible3,ownerichoosingtheincentiveparameterssuchthattheisopro…tcurveof…rmithroughthesecondstageequilibriumpointistangenttothereactionfunctionof…rmj.Thatis,inchoosingtheincentiveparameters,owneriischoosingitsmostpreferredpointo¤ofthereactioncurveofmanagerj.WewillrefertothisastheOwner’sOptimalityCondition.

Inthissection,weshowthatifownershavesu¢cientpowertomanipulatetheincentivesoftheirmanagers,thenforanyequilibriumofthetwo-stagepricesettinggame(respectively,quantitysettinggame),thereexistsanequilibriumofthetwo-stagequantitysettinggame(pricesettinggame)thatinducesthesameequilibriumpricesandquantities(althoughtheequilibriumvaluesoftheincentiveparametersmaydi¤er).

Finally,weconsideratwostagegame.Inthe…rststagetheownerofeach…rmchoosesavectorofincentiveparameters°i;fromafeasiblesetofincentiveparametervalues¡i,thatwillbeusedtodeterminethecompensationofherownmanager.FollowingFershtmanandJudd,whenwesay“owner”wemeananindividualoragroupwhosesolepurposeistomaximizethepro…tsofthe…rm.“Manager”referstoanagentthattheownerhirestomakerealtimeoperatingdecisions.

Atthebeginningofthesecondstagethecompensationschemesoftheman-agers(expressedby°1;°2)arerevealedandbecomecommonknowledge.Then,thetwomanagersengageinsomeformofduopolycompetition.

Inthispaper,weconsiderthelineardi¤erentiatedproductsdemandsystemgivenby

q1=a1¡b1p1+z1p2

Wesaywheneverpossiblesincetheownermaynothavesu¢cientpowertomanipulatethe

3

incentivesofhermanagerforthisconditiontohold.Inthiscase,theownerselectsthemostpreferred(highestpro…t)pointo¤ofheropponent’sreactioncurvepossible,giventhepowertosetincentivesthatsheposseses.

5

q2=a2¡b2p2+z2p1:

Firmsareassumedtohaveconstantmarginalcostequaltoci>04.Intheabsenceofincentiveschemecommitment,themanagers’reactionfunctionswouldbelinearinsuchagame,regardlessofwhetherthe…rmscompeteinpricesorinquantities.Wewishtoretainthisproperty,andsowerestricttheincentiveparametersavailabletotheownersaccordingtothefollowingcondition.Linearity:Theincentiveparametersavailabletotheownersaresuchthatthemanagers’incentivereactionfunctionsarelinearinthestrategyoftheother…rm.Thisconditionissatis…edbyallofthemodelsmentionedintheintroduction.Ageneralspeci…cationofamodelsatisfyingthelinearityconditionwouldbeonewhereownerichoosesweights(°i1;°i2;°i3;°i4)2¡i½<4suchthatthemanageriscompensatedaccordingtothefollowingfunction:

®i+¯i[°i1(piqi)¡°i2(ciqi)¡(°i3(pjqj)¡°i4(cjqj))]:

Theequilibriumconceptweemployissubgameperfection.Thatis,werequirethatinthesecondstagethemanagerschooseastrategythatmaximizestheirin-centivefunctionsforanygivenvectorofincentiveparameters,takingthestrategyoftheiropponentasgiven.Inthe…rststage,werequirethattheownerschoosetheincentiveparametersinordertomaximizetheirpro…t,giventhechoiceofincentiveparametersoftheiropponentandtheequilibriumthatwillresultwhenthemanagersplaythesecondstagegame.Thenextsubsectionsdescribesthegameingreaterdetail.2.1.TheSecondStage

Weassumethatthelinearityconditionholdsandthatinthe…rststagetheownershaveselectedtheincentiveparameters°i2¡i,i=1;2:Themanager’sincentive

4

Inordertoguaranteeproductionofpositivequantitiesinequilibriumweneedtoassume

bjai+zjajbibj¡zizj

thatthemarginalcostofproductionissmallenough.Speci…cally,weassumethatthemarginalcostof…rmiobeysci<

wherej=i.

6

functionMi(°i;si;sj)dependsontheincentiveparameterschosenbyhisownowner,thestrategythemanagerchooses,aswellasthestrategychosenbyhisopponent.Inpricecompetition,thestrategicvariablesareprices,whileinquan-titycompetition,theyarequantities.Themanager’sreactionfunctionRi(°i;sj)whichmapspairs(°i;sj)tostrategiessi,isthesolutionto

Ri(°i;sj)2argmaxMi(°i;si;sj):

si

SinceMi(°i;si;sj)isdi¤erentiable,thisisequivalenttoRi(°i;sj)beingsuchthat

@Mi(°i;Ri(°i;sj);sj)

@si

=0andtheappropriatesecondorderconditionsforamaximum

hold.

¤

i=1;2;j=i:Thatis,asecondstageequilibriumisapair(s¤1;s2)ofstrate-

¡¢¤¤¤

Asecondstageequilibriumisavector(s¤;s)suchthats=R°;siij;12i

giessuchthatthereactionfunctionsofthetwomanagersintersect.An(second

¤¤¤¤stage)equilibriumoutcomeunder(s¤1;s2)isapricep=(p1;p2)andquantity¤¤q¤=(q1;q2)suchthatp¤andq¤arethepriceandquantitythatoccurwhenthe¤equilibriumpair(s¤1;s2)areplayed.

2.2.TheFirstStage

Inthe…rststageofthegame,ownerschoosetheincentiveparametersinordertomaximizetheirpro…tsgiventhechoiceofincentiveparametersoftheiropponentsandtheequilibriumthesewillinduceinthesecondstage.Thatis,ownerichooses°¤iinordertosolvethefollowingprogram

¤

°¤2argmax(p¤ii¡ci)qi

°i¡¢j¤¤

s:t:s¤=R°;sj=1;2jj¡j

¤

andp¤;q¤istheequilibriumoutcomeunder(s¤1;s2).

Sincethepro…tfunctionisdi¤erentiable,theowner’schoiceof°¤iisequivalenttoherchoosing°¤iinordertoshiftherownreactionfunctionsothatitintersects

7

withtheopposingmanager’sreactionfunctionatthepointalongtheopponent’sreactionfunctionthatmaximizesitspro…t.Iftheownerhassu¢cientpowertomanipulatethereactionfunctionofitsmanager,thenthisamountstochoosingthepointalongitsopponent’sreactionfunctionsuchthatitspro…tisoquantistangenttotheopponent’sreactionfunctionatthatpoint.Withthisgraphicalintuitioninplace,wearereadytostatethemainresult.2.3.TheMainResult

Webeginbyconsideringconditionsunderwhichthereisacorrespondingequilib-riuminthetwostagequantitycompetitiongamethathasthesameequilibriumoutcomeasagivenequilibriumofthepricesettinggame.Asnotedabove,thetangencyconditioninthe…rststagewillonlyholdiftheownershavesu¢cientpowertochoosetheincentivesoftheirmanagers.Speci…cally,theownersmusthaveenoughpowertoshiftthereactioncurveoftheirownmanagerstothepointalongtheiropponent’sreactioncurvewheretheirownpro…tismaximized,i.e.theirpro…tisoquantistangenttothereactioncurveoftheiropponent.Forthereminderofthesectionweassumetheowner’shaveatleastthismuchpower.(TPE)TangencyinPriceEquilibrium:Assumethatinanypriceequi-librium,ownershaveenoughcontrolovertheirmanager’sincentivesinthepricesettinggamethatthepro…tisoquantofowneriistangenttothereactioncurveofmanagerjattheequilibriump¤foralli=j:

Forexample,powertomanipulateeithertheslopeortheinterceptofmanageri0sreactioncurveoverabroadenoughrangewillbesu¢cienttosatisfy(TPE).Anypointinthe(q1;q2)spacecanbemappedtoapointinthe(p1;p2)spaceusingtheequationscharacterizingthedemandsystem.Thisidenti…esthequantity(q1;q2)withthecorrespondingprices(p1;p2)thatwouldclearthemarketandcausethesequantitiestobesold.Sincethedemandsystemislinear,linesinthequantityspacemapintolinesinthepricespaceandviceversa.So,the

8

reactionfunctionresultingfromquantitycompetitiontransformationgivenbythedemandsystem.Considerthefollowingcondition:

qRi

inthequantityspacecanbetranslatedintothepricespacebyapplyingthe

¡

¤¤°qi;q¡i

¢

whichresides

(CQI)ControlofQuantityIncentives:Owners1and2havesu¢cientpowertomanipulatetheincentivesoftheirmanagerssothatifp¤istheequilib-riumoutcomepriceunderpricecompetition,thenthereexistincentiveparameters

q¤q¡q¤¤¢°isuchthatthequantitycompetitionreactionfunctionRi°i;q¡i,whentrans-formedintothepricespace,isidenticaltothepricecompetitionreactionfunction¡p¤¤¢p

Ri°i;p¡ithatinducesthep¤equilibriumoutcome.result.

Theorem1:Let(p¤;q¤)bethesecondstageequilibriumoutcomethatresultsfrompricecompetition.If(TPE)and(CQI)hold,thenthereisacorrespondingequilibriuminthetwostagequantitycompetitiongamethatinduces(p¤;q¤)asanequilibriumoutcome.

Proof:Considerthetwostagepricecompetitiongame.Attheequilibrium,

¤p¤

theownerschooseincentiveparameters(°p1;°2)suchthatthemanagers’reaction

Assumptions(TPE)and(CQI)aresu¢cientforthe…rsthalfoftheequivalence

functionsintersectatp¤.Since(TPE)holds,atthispointthereactioncurveofmanageriistangenttothepro…tisoquantofownerj,i=j:If(CQI)holds,there

¤q¤exist°qsuchthatthequantityreactioncurvesde…nedby°ii,whenprojected

intothepricespace,intersectatp¤andcoincidewiththepricereactioncurves.

¤

Considerthequantityreactioncurvesde…nedby°qi,i=1;2,inthequantity

space.Sincetheycoincidewiththeequilibriumpricereactioncurvesinthepricespace,andtheequilibriumpricereactioncurvesintersectatp¤inthepricespace,

¤¤thequantityreactioncurvesde…nedby°qi,i=1;2,intersectatqinthequan-

tityspace.Thus,theManager’sOptimalityConditionissatis…edatq¤forbothmanagers.Furthermore,thefactthatthepro…tisoquantofowneri;i=1;2,istangenttothereactioncurveofmanagerj=iinthepricespaceimpliesthatthe

9

tangencystillholdsinthequantityspace,sincethetangentisjusttheslopeofthequantityreactionfunctioninthepricespaceandbotharetranslatedtothe

¤

quantityspaceviathedemandsystem.Thus°qiisanoptimalincentivepara-

meterchoiceforowneri;i=1;2,implyingtheOwner’sOptimalityConditionis

¤satis…ed.Therefore,°qiareequilibriumchoicesoftheincentiveparameterswhich

inducep¤;q¤astheequilibriumoutcome.¥

TheintuitiontheproofofTheorem1isrelativelystraightforwardandisillus-¤tratedinFigures1aand1b.Theproofshowsthatifthereexistsa°qisuchthat

thequantityreactioncurve,whentranslatedintothepricespace,corresponds

¤withthepricereactioncurveattheequilibrium°pi;thenthegeometricrelation-¤shipsthatmake°pisatisfytheManager’sandOwner’sOptimalityConditions

translateintothepricespaceinamannerthatpreservestheserelationships.IftheManager’sOptimalityConditionandOwner’sOptimalityConditionholdin

¤thequantityspace;then°qiinducesanequilibriumofthequantitysettinggame.¤Hence°qiinducesanequilibriuminthequantitygamethathasthesameequi-¤libriumoutcomeasthe°piequilibriuminthepricegame.

p2 Π1(p*)=k* q2 R2q(γ2q*)=R2p(γ2p*) γ’ varies

q2p* R2q(γ’2q) R2p(γ2p*)=R2q(γ2q*) p1 Π1(q*)=k* R2q(γ’2q) γ’2q varies q1 Theorem1showsthat(TPE)and(CQI)holdingsimultaneouslyaresu¢cientfortheretobeaquantityequilibriumoutcomecorrespondingtoanypriceequi-libriumoutcome.Wecanstatetheanalogousassumptionsabouttangencyofthe

10

quantityequilibrium,(TQE)andcontrolofthepriceincentives,(CPI).Theseas-sumptionswillbesu¢cientforthesymmetricresultaboutequilibriumoutcomesofthequantitycompetition.

Theorem2:Let(p¤;q¤)bethesecondstageequilibriumoutcomethatresultsfromquantitycompetition.If(TQE)and(CPI)hold,thenthereisacorrespondingequilibriuminthetwostagepricecompetitiongamethatinduces(p¤;q¤)asanequilibriumoutcome.

Proof:MutatisMutandisastheorem1.¥

Theorems1and2,takentogether,providesu¢cientconditionsfortheequiv-alenceofthesetofequilibriumoutcomesunderpriceandquantitycompetition.Corollary1:Suppose(TQE),(TPE),(CQI),and(CPI)hold.Thenthesetofequilibriumoutcomesunderthetwostagepriceandquantitycompetitionareidentical.

Proof:FollowsdirectlyfromTheorems1and2.

Fortheremainderofthepaper,wewilluse(TE)torefertothecasewhen(TQE)and(TPE)hold,and(CI)torefertothecasewhen(CQI)and(CPI)hold.Theassumptions(TE)and(CI)explicitlystateconditionsunderwhichownershavesu¢cientpowertocommittheirmanagerstoacertaintypeofbehavior.The(TE)assumptionsrequirethatownershavesu¢cientcontroloverincentivesforagiventypeofcompetition,andthattheycanchoosetheirfavoritepointo¤oftheiropponent’sreactioncurvethroughtheirchoiceofincentiveparameters.The(CI)assumptionsrequirethatownershavesu¢cientcontrolovertheincentivesoftheirmanagersinonetypeofcompetition(sayquantity)togetthemtomimicthebehaviortheyexhibitinanequilibriumoftheothertypeofcompetition(sayprice).Thusthe(CI)assumptions,wouldgenerallyrequireownerstoexercisecontroloverboththeslopeandtheinterceptofthemanager’sreactioncurves,whilethe(TE)assumptionsseemtorequirecontrolonlyovertheslopeortheintercept.

Theorems1-2andCorollary1statethatiftheownershavesu¢cientcontrol

11

overincentivesinthesenseof(TE)and(CI),thentheequilibriaareequivalent.Thisissomewhatparadoxical,sinceone’sinitialreactionistosay“iftheyhavethatmuchcontrol,can’ttheydoevenbetter?”However,thelogicoftheproofshowswherethisintuitionfails.Westartbytakinganequilibriuminonetypeoftwo-stagecompetitionasgiven.Wethenshowthatifassumptions(TE)and(CI)hold,thentheownerscanreplicatetheequilibriumconditions(tangencyoftheisopro…ttotheothermanager’sreactioncurve,andtheequilibriumpricebeingattheintersectionofthereactioncurves)intheothertypeofcompetitionbymanipulatingtheincentivesofthemanagers.Bystartingwithanequilibriuminonetypeofcompetitionandreplicatingitintheothertypeofcompetition,wearenottryingtoidentifytheabsolutebestoutcomefortheowners.Rather,weareaskingwhethertheconditionsthatmaketheoriginalequilibriumanequilibriumcanbereplicatedintheothertypeofcompetition.If(TE)and(CI)hold,theanswertothisquestionisyes.

Foranotherapproach,considerthefollowing.Thereasonwhysimplepriceandquantitycompetition(withnoincentiveschemecommitment)failtohavethesameequilibriumisthattheincentivesgiventoamanagerwhenhetakeshisopponent’spriceas…xedinchoosingastrategyaredi¤erentthantheincentivesgiventoamanagerwhenhetakeshisopponent’squantityas…xed.However,weassumethatownersherehavesu¢cientpoweroverincentives(reactionfunctions)tomitigatethesedi¤erences.Whenthereasonwhytheequilibriadi¤erisremovedbyadmittingincentiveschemecommitment,theycoincide.

3.Applications

Inthissectionweconsidertwodi¤erenttypesofincentiveschemecommitmentmechanisms.First,weconsiderthemodelofMillerandPazgal(1997),whereinthe…rststageownerscommittheirmanagerstoaspeci…cattitudetowardrelativeperformanceandinthesecondstagethemanagerscompeteineitherpricesor

12

quantities.Weshowthatownershavingpowertocontroltheweightmanagersgivetotheirperformancerelativetothecompetitionissu¢cientfor(TE)and(CI)tohold.Consequentlytheequilibriaunderpriceandquantitycompetitionareidentical.

Second,weconsideramodelbasedonFershtmanandJudd(1987),whereownerschoosetheweightmanagersputonrevenues.Weshowthatinthiscase(CI)failstohold,andthustheequilibriadonotcoincide.3.1.CommitmenttoRelativePerformance

Inthemodelofcommitmenttoanincentiveschemebasedonrelativeperfor-mancesuggestedbyMillerandPazgal(1997),ownersgivemanagerstheincentivetomaximizenotonlythe…rm’sownpro…tinisolation.butmanagersarealsocompensatedbasedontheirperformancerelativetothecompetitors.Thisisequivalenttohavingincentivestomaximizeaconvexcombinationofownpro…tandthedi¤erencebetweenownpro…tandtherival’spro…t.

Thedemandstructurewewilluseisthefollowingsymmetricone:

q1=1¡p1+zp2q2=1¡p2+zp1:

(3.1)(3.2)

Inthisdemandstructurewehavesuppressedalloftheparametersexceptforthedi¤erentiationparameterz:Furthermore,wewillassumethat…rmshavezeromarginalcost5.

Webeginbyderivingtheequilibriumwherethemanagerscompeteinpricesinthesecondstage.Weletµpibetheweightowneriplacesonthepro…toftheother…rminthemanager’scompensationscheme.Inthisenvironment,themanagers’objectivefunctionsaregivenby

5

Wemaketheseassumptionsforexpositionalpurposes.Alloftheresultsholdforageneral

lineardemandstructurewith(possiblydi¤erent)constantmarginalcosts.

13

p

mpi=(1¡pi+zpj)pi¡µi(1¡pj+zpi)pj;i=1;2;j=i:

Thecorrespondingreactionfunctionsare

pi(pj)=

1

(1+z(1¡µpi)pj);i=1;2;j=i:2

andthesecondstageequilibriumpricesarethus

¡z+µpiz¡2;i=1;2;j=i:pi=2¡µpz2+µpz2µp¡4+z2¡µpzijji

Lettingxibethepro…tearnedby…rmi,theowner’sobjectivefunctionsaregivenby

xi=(¡z+µpiz¡2)¡¡

¢

¡4+

p2pp2¡µpiz+µjzµi¡µiz¡z¡2

z2¡

2µpiz

¡

2µpjz

+

Thisyieldstheowners’reactionfunctions

¢;p2p2µjzµi

i=1;2;j=i:(3.3)

z

;i=1;2;j=i:(3.4)2¡2µpz+2z+4¡z2+µpzjj

©pz+2pz+2ª

Thesystemofequationsde…nedby(3.4)hastwosolutions,µ1=z;µ2=z;

ª©pz+2pz+2ª©p

pzz

andµ1=z¡2;µ2=z¡2:However,theµ1=z;µ2=zsolutiondoesnot

©pªpzzsatisfythesecondorderconditions,andwediscardit.Theµ1=z¡;µ=22z¡2µpi

=¡1+

µpj

(z+2)

solutionyieldsthefollowingequilibrium:

11pp

q1=q2=z+;

421z¡2p

pp=p=;12

4z¡11z2¡4pp

x1=x2=;

16z¡1zpp

µ1=µ2=:

z¡214

Directcomputationoftheequilibriumwhenthemanagerscompeteinquanti-tiesshowsthatthesameequilibriumpricesandquantitiesobtain,withtheownersputtingweightµqi=

z,z+2i=1;2,onthepro…tsoftherival…rmintheobjective

functionofthemanagers.WenowshowhowthelogicoftheproofofTheorem1canbeusedtodemonstratethisequivalence.

Invertingthedemandsystemgivenby(3.1)and(3.2)yieldstheinversedemandsystem

p1=p2

q1¡1+zq2¡zz2¡1q2¡1+zq1¡z=:

z2¡1

Lettingµqibetheweightassignedtothepro…tof…rmjby…rmi,themanager’sobjectivefunctionswhenthe…rmscompeteinquantitiesaregivenby:

µ¶µ¶qi¡1+zqj¡zqj¡1+zqi¡zq

mq=q¡µqj;i=1;2;j=i:iii

z2¡1z2¡1Di¤erentiatingyieldsreactionfunctions

qi=

1

[1+z+z(µqi¡1)qj];i=1;2;j=i:2

Next,weusethedemandsystemtotranslatethequantityreactioncurvestothepricespace.Manageri’sreactioncurvemapsto:

q1+zpj¡µqiz+zµipj

;i=1;2;j=i:pi=2¡z2z2+µqi

(3.5)

1z¡2

:4z¡1zµq2=z+2:

p

Inpricecompetition,theequilibriumpricesaregivenbypp=p12=qq

andµyieldsµSubstitutingthesevaluesinto(3.5)andsolvingforµq1=12q

Hence,whenµq=µ12=

z,z+2thetranslatedquantityreactioncurvesintersectat

1z¡2:4z¡1q

thepriceequilibriumpricespq1=p2=qqatq1=q2=

1

z4Inthequantityspace,theyintersect

+1:Sincethesequantitieslieonthereactioncurvesofthe2managers,theyformasecondstageequilibriumofthegame.Thusinquantity

15

q

competitionwhenµq=µ12=

zz+2theManager’sOptimalityConditionholdsat

zz+2theequilibriumpricesandquantitiesfromthepricecompetition.

q

Itremainstoshowthatµq=µ12=

formanequilibriumofthe…rststage

ofthegame.Todothis,wemustverifythattheOwner’sOptimalityCondition

1+µqholds.Theslopeof(3.5)isgivenbyz2+µqz21:Theslopeofmanageri’sequilib-¡z2i¡¢z1

riumpricereactioncurveisgivenby2z1¡z¡2:Wesettheseequalandsolvefor

q

µqiinorderto…ndthevalueofµithatmakestheslopeofthetranslatedquantity

zreactioncurvethesameastheoptimalpricereactioncurve.Thisyieldsµqi=z+2:

qzHencetheOwner’sOptimalityConditionholdsaswell,andµq1=µ2=z+2form

anequilibriumforthetwostagequantitycompetitiongamethatinducesthesamepricesandquantitiesasthetwostagepricecompetitiongame.Thustheabilityofownerstocontroltheweighttheirmanagersputonrelativeperformanceissu¢cienttosatisfy(TE)and(CI)andasaresultthereisaquantitycompetitionequilibriumthatinducesthesameoutcomeasthepricecompetitionequilibrium.Sincethesameargumentshowsthereexistsapricecompetitionequilibriumcor-respondingtoanyquantitycompetitionequilibrium,theequilibriaunderpriceandquantitycompetitioncoincide.

Itisinterestingtonotethatwhileingeneral(CI)willrequirecontrolovertheslopeandinterceptofthereactioncurves,thisexampleshowsthatitisnotnecessarytohaveindependentcontroloverbothslopeandinterceptofthereactioncurves.

3.2.AFershtmanandJuddStyleModel

Intheexampleoftheprevioussection,exantecommitmenttocompensateman-agersbasedonrelativeperformanceprovidedsu¢cientpowertocontrolincentivesfortheequivalenceresulttohold.OnemaywonderifasimilarresultholdsinaFershtmanandJuddstylemodel,whereownerscommittheirmanagerstobehav-iorthatmaximizesalinearcombinationofpro…tsandsales.Theanswertothis

16

questionisno.

FershtmanandJuddconsideramodelwheremanagersmaximize

ai¼i+(1¡ai)Ri

where¼iisthepro…tearnedby…rmiandRiisitsrevenue.Each…rmisassumedtohaveconstantmarginalcostequaltoci,andweassumethecostissmallenoughtoallowfortheexistenceofequilibria.Considerthesimpli…edlineardemandsystemoftheprevioussection,andfocuson…rm1.(Thesymmetricargumentsholdfor…rm2.)Inpricecompetitionmanagersseektomaximize:

(1¡p1+zp2)(p1¡ap1c1)

Di¤erentiatingthiswithrespecttopiyieldspricereactioncurve

1

p1=(1+ap1c1+zp2);2

whichhasslope1z:2Thereactioncurveformanager1inthequantitygameisgivenby:

¢1¡qq2

q1=1¡a1c1+z+a1c1z¡zq2:

2

Transformingtheaboveresulttothepricespaceyields:

1q1q

+1zp+ac¡acz221122211

:p1=¡12

¡1+2z

12z:¡2+z2(3.6)

TheslopeofthiscurveisalwaysequaltoSincethisisindependentof

q1

aq;thereisnovalueofaiithatwillmaketheslopeof(3.6)equal2z,theslope

ofthepricereactioncurve.Sincechangingtheincentiveparameterscanonlyshiftthereactioncurveinaparallelmannerbutcannota¤ecttheslope,(CQI)failstohold,andthereisnoequilibriuminthequantitygamethatinducesthesameequilibriumoutcomeastheequilibriumofthepricegame(see…gure2).Furthercomputationveri…esthatthesameproblemcauses(CPI)tofail,anddirectcomputationcon…rmsthattheuniqueequilibriainthetwogamesare,infact,di¤erent.

17

P2 Π1(p*)=k* P* R2p(γ2p*) R2q(γ2q) P1 4.Generalizations

Themodelpresentedhereconsidersonlythespecialcaseoflineardemandandconstantmarginalcost.However,theintuitiveargumentpresentedabovesuggeststhattheresultsholdinabroaderclassofdemandstructures.Sincethecrucialstepintheargumentinvolveshaving“su¢cientpowertomanipulatethereactioncurvesofthemanagers”suchthatthequantityreactioncurves(inthepricespace)passthroughtheequilibriumpricesfromthepricecompetitionandaretangenttothepro…tisoquantsoftheother…rmsatthispoint,itsuggeststhatallthatisneededfortheargumenttogothroughisforthepro…tisoquantsandreactionfunctionstobedi¤erentiableattheequilibriumprices.

However,whenwedepartfromtheworldofreactioncurvesthatarelinearunderallpossiblevaluesoftheincentiveparameters,theresultpresentedheremightfailtohold.Theintuitionisillustratedin…gure3.Itmaybepossibleforthequantityisoquants,whentranslatedtothepricespace,tointersectatthepriceequilibriumandbetangenttothepro…tisoquantoftheother…rmattheequilibriumprice,buttoalsocrossthepro…tisoquantawayfromtheequilibrium.Inthiscase,therewillbeapointalongthequantityreactioncurve

18

thatyieldsahigherpro…tthanthepriceequilibrium.Hencethispricevectorandthecorrespondingquantityvectorwillnotgenerallybeanequilibriumoutcomeinthequantitygame.

Ontheotherhand,theresultspresentedhereeasilygeneralizetooligopolieswithmorethantwo…rms.Thesecondstageoptimalityconditionand…rststagetangencyconditiondonotdependonthecompetitiontakingplaceintwodi-mensionsfortheirvalidity.Thustheargumentspresentedhereholdinlineardi¤erentiatedproductsoligopolieswithanynumberof…rms.

p2 Π1(p*)=k* R2q(γ2q*)

p* R2p(γ2p*) R1q(γ’1q) p1 R1(γ1)=Rpp*q*1(γ1) q5.Discussion

Inthispaperweprovethatforlineardemanddi¤erentiatedproductsduopolieswithconstantmarginalcost,theequilibriumoutcomesunderpriceandquantitycompetitioncoincideifownershavesu¢cientpowertocontroltheincentivesoftheirmanagers.Weshowhowatwostagemodelwhereinthe…rststageowners

19

choosetheweightthattheirmanagerswillgivetotheirperformancerelativetothatoftheirrivalsandinthesecondstagemanagerscompetewiththeseincentivesissu¢cientfortheequivalenceresulttohold.Whileamodelwhereownerscontrolonlytherelativeweightmanagersgivetopro…tsandsalesisnotsu¢cient,sinceownersdonothavethepowertomanipulatetheslopeoftheirmanagers’reactioncurves.

Whatdotheseresultsmeanfortheownersandmanagersinanindustryandforeconomiststryingtounderstandthem?Foreconomists,theseresultsmeanthatifownershavepowertocontroltheincentivesoftheirmanagers,weshouldexpectthattheywilluseittomitigatethedi¤erencesbetweenpriceandquantitycom-petition,makingpricecompetitionlessaggressiveandquantitycompetitionmoreaggressive.Thus,fromthepointofviewofeconomists,onceincentiveschemecommitmentisrecognized,thedi¤erencesbetweenpriceandquantitycompeti-tionequilibriaareexpectedtobelesspronouncedthantheoriginaleconomicmodelspredict.

Fromthepointofviewofownersandmanagersinanindustry,theresultspresentedheredonotimplythattheyneednotbeconcernedwithwhethertheyarecompetinginpricesorquantities.Astherelativeperformanceexampleshows,thesignoftheoptimalweightputonrelativeperformancewillgenerallydependonwhetherthe…rmscompeteinpricesorquantities.Thus,itiscrucialforownerstoknowwhatkindofstrategiestheirmanagersfundamentallyemploy,sincetheycannotdesignanoptimalincentiveschemewithoutsuchknowledge.

However,whileownersandmanagersstillneedtoknowwhethertheycompeteinpricesorquantities,incentiveschemecommitmentimpliesthatintermsofprof-its,the…rmsshouldbeindi¤erentbetweenanindustrywherethe…rmscompeteinpricesandoneinwhichtheycompeteinquantities,sinceoncethisisknown…rmswilladjusttheincentivesofthemanagersaccordingly,andtheultimateequilibriumoutcomewillbethesameregardlessofthetypeofcompetition.

20

References

[1]Cheng,L.“ComparingBertrandandCournotEquilibria:aGeometricAp-proach.”RandJournalofEconomics,Vol.16(1985),pp.146-152.

[2]Fershtman,C.andJudd,K.“EquilibriumIncentivesinOligopoly.”American

EconomicReview,Vol.77(1987),pp.927-940.

[3]Fumas,V.S.,”RelativePerformanceevaluationofmanagement”International

JournalofIndustrialOrganizations,Vol.10(1992),pp.473-489.

[4]Miller,N.andPazgal,A.“RelativePerformanceasaStrategicCommitment

Mechanism”mimeo,NorthwesternUniversity,November1997.

[5]Singh,N.andVives,X.“PriceandQuantityCompetitioninaDi¤erentiated

Duopoly.”RandJournalofEconomics,Vol.15(1984),pp.546-554.

[6]Sklivas,S.D.“TheStrategicChoiceofManagerialIncentives.”RandJournal

ofEconomics,Vol.18(1987),pp.452-458.

[7]Vickers,J.“DelegationandtheTheoryoftheFirm.”EconomicJournal,Sup-plement,Vol.95(1985),pp.138-147.

21

因篇幅问题不能全部显示,请点此查看更多更全内容

Top