您的当前位置:首页正文

教研工作经验总结

来源:一二三四网

  四年级下册《植树问题》这个教学内容课改前作为“奥数”题让学有余力的学生训练,现行教科书把它编入教材,有“封闭”的植树问题,有不“封闭”的植树问题,本节课7个参赛老师选择的都是不“封闭”的植树问题,教材处理、教学过程各有千秋,异彩纷呈。多数老师在教学中采用化归的思想方法解决植树问题,将不“封闭”的植树问题分成三种类型,而每类题目所采用的方法都是在基本类型(两端都栽)的基础上变化的。两端都栽,棵数=间隔数+1;一端不栽,棵数=间隔数;两端都不栽,棵数=间隔数-1。这样的教学表面上看学生建立了数学模型,解决问题时只要应用模型就可以了,其实不然。从课堂教学效果上看,当学生练习“一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?”(P119)这道题时,锯下来的小段木料有长度像“间隔”,锯的地方倒是像“树”,这时候学生应用模型时也就不知道要应用三种模型中的哪一种,教学难点、关键处把握不准的问题就凸显出来了。

  教学《植树问题》一课时的教学难点我个人以为要放在让学生区分什么是“树”、什么是“间隔”;教学关键是如何使学生区分求的是“树”还是“间隔”。因此教学时教师要用大量的事例让学生认清“树”与“间隔”的关系,即:“树”比“间隔数”多1。接着利用线段图帮助学生对“树”以及“间隔”之间进行转化,分析题目中哪一个可以看成“树”,哪一个可以看成“间隔”,最后形成统一的数学模型:棵数=间隔数+1。这样有利于培养学生解决问题的能力。如上例“锯木”题,只要认定锯下来的一小段木料是“间隔”,要锯的地方是“树”(两端不栽),要锯5-1=4次,共32分钟,即:棵数=间隔数-1,。若把“锯木”题改编成“一根木头长10米,锯4次,能锯成多少段?”这时锯下来的一小段木料是“树”,锯的次数是“间隔”,求锯成的段数,就是求“树”的棵数,4+1=5棵,即:棵数=间隔数+1。这样,将“树”和“间隔”进行巧妙的转化,就能帮助学生解决类似的“植树”问题,如“敲钟”题、“经过时间”题、“摆花”题等等,这样处理教学内容,能起到举一反三、事半功倍之效。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top